

Copyright 1983 by SofTech Microsystems, Inc.

All rights reserved. No part of this work may
be reproduced in any form or by any means or
used to make a derivative work (such as a
translation, transformation, or adaptation)
wi thout the wri tten permission of SofTech
Microsysterns, Inc.

p-System is a trademark of SofTech Microsysterns,
Inc.

UCSD and UCSD Pascal are regis tered trademarks
of the Regents of the University of california.
Use thereof in conjunction wi th any goods or
services is authorized by specific license only,
and any unauthorized use is contrary to the laws
of the State of C~lifornia.

Printed in the United States of America.

Disclaimer

This document and the software it describes are
subject to change without notice. No warranty
expressed or implied covers their use. Neither
the manufacturer nor the seller is responsible
or liable for any consequences of their use.

PREFACE

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Preface

This publication is a reference manual for the
p-System operating system, file manager,
screen-oriented editor, and several utilities.
It describes the facilities of these major
p-System components and provides basic
instructions for using them. If you are
somewhat familiar with the p-System, the
infornation presented here will complement and
increase your knowledge of it. However, if you
are a beginner or have never used this system,
you should first read:

Personal Computing with the UCSD p-System

For further infornaton about the system and its
use, refer to the following publications:

Program Development Reference Manual
Assembler Reference Manual
Optional Products Reference Manual
Internal Architecture Reference Manual
Adaptable System Installation Manual
UCSD Pascal Handbook
FORTRAN-77 Reference Manual
BASIC Reference Manual

All of these publications are available from
SofTech Microsysterns. Personal Computing with
the UCSD p-System and UCSD Pascal Handbook are
published by Prentice-Hall and are available in
bookstores, as well.

v

TABLE

OF

CONTENTS

INTOODUCTION. • • • • • • • • • • • • • • • • • 1-3

1-3

1-5.
ORGANIZATION OF THIS MANUAL ••

BACKGROUND. • • • •

DESIGN PHII..ffi)PHY. • 1-7

User-Friendly •• 1-8

Portability. . . 1-8

USING THE p-SYSTEM. 1-9

Menus and PrOO1pts •• 1-9

System Files •• 1-10

Table of Contents

p-SYSTEM OONFIGURATIONS. • • • • • • • • 1-13

THE OPERATING SYSTEM. 2-3

INTRODUCTION. • • • 2-3

MENUS AND PROMPTS. 2-3

••• 2-3Menus •••

Prompts.

DISK SWAPPING. •

.
. . . 2-5

2-8

2-9

2-10

2-12

2-14

2-15

2-16

. .

. .

Redirection. • • • • • • • • • • • • •

2-18

2-19

2-20

.2-22

2-23

2-24

Execution-0ption Strings. • 2-25

Prefixes and Libraries. • • • • • • • 2-28

2-29

U(ser Restart.

A(ssernble. • • • • • • • • • •

R(un ••••••

X(ecute •••••••••••••

M(onitor ••••••

C(ompile.

D(ebug •••

E(dit ••

F(ile ••

H(alt. • • • • • • •••• 2-17

I (nitialize. • • • • • • • • • • • • • •

L(ink.. . • • • • •

OPERATING SYSTEM OJMMANDS.

Table of Contents

FILE MANAGEMENT. • • • • • • • • • • • • • • • 3-3

INTRODUCTION. • • •

FILE ORGANIZATION ••••

File and Volume Names.

. 3-3

3-5

3-6

File Name Suffixes. • • • • • • • • •• 3-12

Devices and Volumes ••

WORK FILES ••••••

. . . . • 3-15

• 3-18

USING THE FILER. • • • • • • • • • • 3-20

Filer Menus. • • • • • • • • • • • • •• 3-20

Wild Cards. • • • • • • • • • • • • • • • 3-22

RECOVERING LOST FILES. • • • • • • • •• 3-26

Duplicate Directories •••••••••• 3-29

SUBSIDIARY VOLUMES. • • • • • • • • • • • 3-33

Creating and Accessing SVOLs. • • •• 3-34

Mounting and Dismounting SVOLs •••• 3-37

Installation Information •••••••• 3-42

USER-DEFINED SERIAL DEVICES. • • •• 3-43

FILER FUNCTIONS. • • • • • • • • 3-44

B(ad Blocks. • • • • • • • • • • • • •• 3-45

C(hange. • • • • • • • • • • • • • • • • • 3-47

D(ate ••••...•..•.•...... 3-52

E(xtended List. • • • • • • • • • • • • • 3-54

F(lip Swap/Lock. • • • • • • • • • • • • 3-56

Table of Contents

.

. . .
• • • • • 3-67· . .

.3-69

.3-58
• •• 3-60

3-62

. .

. .

. . .
. . .

G(et •••

L(ist Directory. • •

M(ake •••••••

N(ew ••••••

K(runch •••••••••

. . • • . • . • . • . . • . 3-81

••.. • 3-70

••••••• 3-73

• •••••• 3-75

. . 3-91

3-93

• • 3-76

3-79. .
. .. .

. . .

· .

. . .
. . .

.
S(ave •••

T(ransfer •••

V(olumes.

W(hat ••

R(eIIlOve •••••••

O(njoff-line ••

P(refix.

Q(uit ••

• • • • • • • • • . • 3-94X(amine •••••

Z(ero •••••••• 3-97

.
SCREEN-DRIENTED EDI1OR.

INTRODUCTION.

· 4-3

4-3

.
4-3
4-3

• • 4-3
4-4
4-5

4-5

• • 4-6

• 4-6

4-7

. .

. . .
.

THE EDI1OR ••

Introduction. • •

The Window into the File.

The Cursor.

The Menu ••••••

Notation Conventions ••

Editing Environment Options. •

Conmand Hierarchy ••••••

Repeat Factors. • •

Table of Contents

Direction Indicator ••••••••••• 4-8

Using the Editor. • • • • • • • 4-9

Moving the Cursor •••••••••••• 4-9

F(ind and R(eplace. • • • • • • • • 4-13

Work Files. • • • • • • • • • • •• 4-15

Using Insert. • • • • • • • • • • • 4-16

Using Delete. • • • • • • 4-18

Leaving the Editor ••••••••••• 4-19

Screen-Qriented Editor Comnands. • • • 4-20

A(djust • • • • • • • • • • 4-20

C(opy. • • • • • • • • 4-22

D(elete. • • • • • • • • • • 4-25

F(ind. • • • • • • • • • •• 4-28

Insert. • • • • • • • • • • • • • • • • • 4-31

4-42

4-32

4-40

4-41

•• 4-41

• •• 4-37

••• 4-39

• • •• 4-42

• • • • • 4-35

· . .
· .
. .

. .
• • • • • • • • 4-41

. .

. 4-36

. . .
. .

. . . .

. . .

. .

Using Auto-Indent ••••••

Using Filling. • • •••••••••• 4-32

J(ump ••

K(olumn •••••

M(argin ••

Conmand Characters. • • • •

P(age.

Q(uit.

U(pdate: •••••

E(xit: •••••

R(eturn: •

W(rite: ••

R(eplace. • • • • • • • • • • • • • •• 4-43

S(et ••••••••••••••••••• 4-46

Table of Contents

S(et E(nvironment. • • • • • • • 4-46

E(nvironment Options. • • • • • • • • 4-47

S(et M(arker. • • • • • • • • • • •• 4-50

V(erify. • • • • • • • • • • • • • • • • 4-52

X(change. • • • • • • • • • • • • • •• 4-53

Z(ap ••••••••••••••••••• 4-55

.
UTILITY PROORAMS.

INTRODUcrION •

. 5-3

5-3

PRINT. • • • • • • • • • • • • • • •• 5-4

Introduction. • • • • • • • • • • •• 5-4

Simple Uses of PRINT. • • • • • • • • • • 5-5

Interacting with PRINT. • • • • • • • • • 5-7

Controlling the Layout of Pages. • •• 5-8

The Content of Pages. • • • • • • • • • 5-10

Output Methods •••••••••••••• 5-16

PRINT Invocation Shortcuts ••••••• 5-17

Sunmary of Menu Items •••••••••• 5-20

Sumnary of Coomand Lines. • • • • • • • 5-22

Sunmary of Escape Sequences. • • • 5-23

PRINT SRX)LER. 5-24

QUICKSTART. • • • • • • • • • • • • • • • • 5-27

Introduction. • • • • • • • • 5-27

QUICKSTART Utility Opera.tion. • •

System Environment Prepara.tion. •

C(opy Toggle Option. • • • • • •

5-29

• .5-29

5-29

Table of Contents

L(ibrary Copy Toggle Option. • • • • 5-31

M(essages Toggle Option. • • • • • • 5-32

Using The QUICKSTART Utility. • • • • 5-32

P(rograrn Coomand. • • • • • • • • • • • 5-34

S(ystem Coomand. • • • • • • • • • •• 5-38

Obsolete Environment Descriptions •• 5-40

QUICKSTART Error Messages. • • • • • • 5-42

Using Library ••••••••••••••

Library Example. • • • • • • • • • • • •

REAL OONVERT. •

LIBRARY •••••

· . . .
·

••• 5-48

5-51

5-52

5-53

SRI'UP. • • • • • • • • • • • • • • • • • • • 5-57

Running SEI'UP. • • • • • • • • • • • •• 5-58

Miscellaneous Notes for SETUP. • • • • 5-61

SYSTEM.MISCINro - Data Iterns ••••• 5-64

Sunmary of Data I terns. • • • • • • • • • 5-83

Sample SErUP Session. • • • • • • • • • 5-85

Sample Terminal Setups. • • • • • • • • 5-88

DISKSIZE •••••••••• 5-91

COPYDUPDIR. •

MARKDUPDIR. ·
• 5-93

• 5-94

REX:X)VER. • • • • • • • • • • • • • • • •• 5-96

Table of Contents

APPENDICES. • • • • • • • • • • • • • • • • • • A-l

A: EXFXlJTION ERRORS. • • • • A-3

B: I/O RESULTS. • • • • • • • • • • • • A-4

C: DEVICE NUMBERS. • • • • • • • • • • • • A-5

D: ASCII TABLE. • • • • • • •• A-6

E: CONFIGURATION NOTES. • • • • • • • •• A-7

F: USUS MEMBERSHIP APPLICATION. • • • • A-19

G: SOFTWARE PROBLEM REPORT. • • • • •• A-23

H: p-SYSTEM GlOSSARY. • • • • • • • • • • A-3D

INDEX. • 1-1

CHAPTER 1

INTRODUCTION

Introduction

ORGANIZATION OF THIS IlANUAL

This book is the main user reference manual for
the p-System

Chapter 1, "Introduction," presents background
infonnation about the p-System, including a
short history of p-System development and a
description of p-System components.

Chapter 2, "The Operating System," describes the
func tion of each system corrmand. I t also
presents examples of the main system menu and
gives suggestions and procedures for interacting
with the p-System.

Chapter 3, "File Management, "
infonnation about file organization
handling, as well as descriptions of
manager ("filer") and its functions.

presents
and file
the file

Chapter 4, "Screen-oriented Editor," describes
the p-System's main text editor.

Chapter 5, "Utility Programs," covers several
p-System utilities. These utilities can help
you to print files, recover lost files,
configure the p-System for a particular
terminal, and so forth.

1-3

Introduction

The appendices present useful reference
material:

A Execution Errors
B I/O Results/Errors
C Device Numbers
D ASCII Code
E p-System Configuration Notes
F USUS Membership Application
G Software Problem Reporting
H p-System Glossary

1-4

Introduction

BACKGROUND

In June 1979, SofTech Microsystems in San Diego,
began to license, support, maintain, and develop
the p-System. The resulting effort to build the
world's best small computer environment for
executing and developing applications has
dramatically increased the growth and use of the
p-System. This universal operating system now
offers fully compatible, integrated compilers
for UCSD Pascal , FORTRAN-77, and BASIC. The
first p-System ran on a 16-bit microprocessor.
Today. the p-System runs on 8-bit. 16-bit, and
32-bit machines-including the ZSO, 8080/8085,
8086/8088/8087. 6502, 6809, 68000, 9900. PDP-ll,
LSI-ll, and VAX.

The p-System began as the solution to a problem.
The University of California at san Diego needed
interactive access to a high-level language for
a computer science course. In late 1974,
Kenneth L. Bowles began directing the
development of the solution to that problem:
the p-System. He played a principal role in the
early development of the software.

In the sumner of 1977, a few off-eampus users
began running a version of the p-System on a
PDP-ll. When a version for the 8080 and the Z80
began operating in early 1978, outside interest
increased until a description of the p-System in
Byte Magazine drew over a thousand inqUiries.

1-5

Introduction

As interest grew, the demand for the p-Systern
couldn't be met within the available resources
of the project. SofTech Microsystems was chosen
to support and develop the p-Systern because of
its reputation for quality, high technology, and
language design and implementations.

1-6

In troduc tion

DESIGN PHILOSOPHY

The developrrent team, rmny of WhOOl continued
their efforts on behalf of the system at SofTech
Microsystems, decided to use stand-alone,
personal computers as the hardware foundation
for the p-System rather than large, time-sharing
computers. They chose Pascal for the
progranming language because it could serve in
two capaci ties: the language for the course and
the system software implementation language.

The development team had three prirmry design
concerns:

1. The user interface must
specifically to the novice,
acceptable to the expert.

be oriented
but must be

2. The implementation must fit into personal,
stand-alone IIIlchines (64K bytes of memory,
standard floppy disks, and a CRT terrrdnal).

3. The implementation must provide a portable
software environment where code files
(including the operating system) could be
moved intact to a new microcomputer. In this
way, application programs written for one
microcomputer could run on ano ther
microcomputer without recompilation.

The current design philosophy at SofTech
Microsysterns, where the p-System continues to
evolve , is bascially the same as the original
philosophy.

1-7

Introduction

User-Friendly

The p-System continuously identifies its
current mode and the options available to you
in that roode. This is accomplished by using
menus, displays, and prompts. You my select
an option from a menu by pressing a
single-character command. The system's
displays then guide your interactions with the
computer. As you gain more experience, you
can ignore the continuous status
infonnation-unless it is needed.

Portability

The p-System is more portable than any other
microcomputer system. It protects your
software investments without restricting
hardware options. The p-System does this by
compiling programs into p-code-rather than
native mchine language-thus, allowing these
code files to be executed on any microcomputer
tha t runs the p-Systern.

1-8

In troduc tion

USING THE p-SYSTEM

The p-System includes an operating system,
filer, editor, and several other components.
The filer, edi tor, and other components are
separate programs that perform functions
traditionally perfonned by an operating system.

Menus and Prompts

The p-System is menu-driven; tha t is, it
displays a menu at the top of the screen that
lists the available comnands. To use anyone
of these conmands, you need press only one
key. Often, prompts are displayed. They
require you to enter in a response and then
press the <return> key. You can use
<backspace> if you make a mistake while
responding to a prompt.

The rrenus and prompts are organized in a
hierarchy (see Figure 1-1). The outermost
(Command) menu lists several items, including
E(dit. When you press 'E' to call the E(di t
option, the p-System activates the edi tor. To
qUit using the editor, press 'Q' for Q(uit;
this will return you to the Command rrenu.

Figure 1-2 graphically describes the
interrelationships of the major p-System
components.

1-9

Introduction

System Files

The system files are disk files which contain
the bulk of the p-System.

Most of the system files reside on the system
disk, which is the disk you bootstrap with.

These files are listed as follows:

SYSTEM.PASCAL
SYSTEM. INTERP
SYSTEM.MISCINFO
SYSTEM.LIBRARY
SYSTEM.MENU
SYSTEM. STARTUP
SYSTEM.SYNTAX

The following sys tem files don't necessarily
need to reside on the system disk:

SYSTEM.<X>MPILER
SYSTEM. ASSMBLER (no 'E')
SYSTEM. EDITOR
SYSTEM. FILER.

SYSTEM.PASCAL is the operating system.

SYSTEM.MISCINFO is a data file that contains
miscellaneous information about an individual
system. This includes terminal handling,
memory configurations, and miscellaneous
options.

1-10

)

Figure 1-1

]""" "'"

SECOND LEVEL

] THIRD LEVEL

o Portable

•

Rewritten 'or~ Tailored for new
new CPU ~ Display Control

Figure 1-2

Introduction

SYSTEM. EDITOR contains the current system
edi tor that you can call by pressing 'E' for
E(ditor-as displayed on the Coomand menu.
This nay be the screen-oriented editor or any
other editor that the p-System uses. To use
another editor. simply change its file name to
SYSTEM. EDITOR after changing the original
SYSTEM. EDITOR to something else.

SYSTEM.CXlMPILER may contain a Pascal. FORTRAN.
or BASIC compiler. To call the code files for
FORTRAN or BASIC compilers. with a single
keystroke from the Comnand menu. change the
name of the desired files to SYSTEM.COMPILER.

SYSTEM.ASSMBLER is the adaptable assembler
that translates assembly language into machine
code. It is the assembler for a particular
processor (there are several varieties
available). You can change to a different
processor by changing the name of the
appropriate assembler to SYSTEM.ASSMBLER. The
assemblers are p-code files a.nd are.
therefore. machine-independent. They can be
used to assemble codes for processors other
than the hos t proccessor. The assembler needs
an opcodes and an errors file.

SYSTEM.SYNTAX contains the Pascal compiler's
error messages. I t must be on the boot disk
if you want to have compile-time errors
displayed in English rather than as error

.~ numbers.

1-11

Introduction

SYSTEM.LIBRARY contains previously compiled or
assembled routines that can be used by other
programs. Long integer support routines are
usually found here.

SYSTEM.STARTUP is an executable code file. If
a file called SYSTEM.STARTUP is present on the
system disk when it is bootstrapPed. the
p-System executes it before the Command menu
is displayed.

SYSTEM.MENU. like SYSTEM. STARTUP, can be any
executable code file. If it is present on the
system disk, it is executed every time the
Coomand menu is about to be displayed. This
facility is generally used as a menu driver
for turnkey applications. (If SYSTEM.STARTUP ~

exists, it is executed before SYSTEM.MENU is
called for the first time.)

SYSTEM. INTERP is the assembly language program
that emulates the p-machine on the hos t
processor. The following are some other
possible names for these emulators, which are
usually machine-specific:

SYSTEM •PDP-II
SYSTEM. ALTOS
SYSTEM. HEATH

1-12

Introduction

p-SYSTDI CONFIGURATIONS

There are two min p-Systern configurations. The
first configuration, which is standard, displays
the Coomand menu when it is booted. As already
mentioned, from this menu, you my select the
major p-System components and execute programs.

The second configuration, on the other hand,
never displays the min p-Systern menu. It is
intended to be bundled with application programs
which display their own menus and prompts. When
this configuration is employed, the p-Systern is
"hidden" underneath the application 's own
environment.

1-13

CHAPTER 2

THE

OPERATING SYSTEM

Operating System

INTRODUCTION

The operating system is the core of the
p-System. When you first boot the p-System, the
operating system's menu appears. From here, you
can select other major p-System components or
run programs. Each time a p-System componen t or
a program finishes execution, you are returned
to the operating system's menu.

The operating system's menu is called the
"Conmand" menu. The i terns on it include the
editor, filer, compiler, and more.

This chapter describes how menus and prompts are
used by the p-System. I t goes on to describe
the particular items on the Command menu.

MENUS AND PROMPTS

Menus

The following describes the menus used by the
p-System•

• The first word (title)
identifies the level of
example, Conmand or Edit.

2-3

of
the

the menu
menu, for

Operating System

• The sections available on a menu are
located to the right of the menu title.
The letter denoting the key that selects an
option is capitalized and set off from the
rest of the word with a parenthesis.

• The version number of the system is lis ted
at the end of the line in square brackets.

• A question mark on the right of a menu
i ndi cates tha t there are more i terns on the
menu than can fi t on a single line.
Entering '?' causes more of the menu to be
displayed.

Some typical menus are listed as follows:

Command: ECdit, R(un, F(ile, CComp, L(ink, X(ecute, A(ssem, O(ebug ?
Filer: GCet, SCave, W(hat, N(ew, LCdir, R(em, C(hng, T(rans, OCate, ?
>Edit: ACdjust C(opy O(el F(ind I(nsert J(ump KCol M(argin PCage ?

I f you enter '? I at the Cornnand menu, the
following is displayed:

Command: H(alt, !(nitialize, U(ser restart, M(onitor

Selecting an option, at the C~mmand menu,
produces one of the following results.

• The p-System allows you to execute a
program.

• A p-System component is started; for
example, the filer or editor.

2-4

Operating System

• The system alters its sta te, for example,
as when you select H(alt.

In general, you may exit from the system
corrmands by pressing 'Q' (for Q(uit). After
performing a function, you may press <space>
to clear the screen and redisplay the menu.

Prompts

As just discussed, a menu displays options you
can select with a single keystroke; however, a
prompt requests information from you. For
example, if you want to execute a program, you
would select the X(ecute option from the
Command menu by pressing 'X'; the system will
respond with the following request-called a
"prompt" :

execute what file?

Your response to this would be to enter the
name of the program to be executed and then to
press <return>.

If you make an error while entering your
response, you can press the <backspace> key to
correct it. You can also use <delete line> to
erase your entire response. You can then
resume entering the correct response.

2-5

Operating System

Another example of a prompt is when you use
the filer to list the directory of a volume.
After pressing ,F' on the Comnand menu to
display the F(iler menu, and then 'L' on the
F(iler menu, the following prompt will be
displayed:

Die.listing of what .vol? .

Your response to this prompt would be to enter
in any valid volume name and then to press
<return>.

Often prompts require that you enter a file
name. File names (as described in Chapter 3)
often end with specific suffixes such as
". TEXT" or ".CODE." Usually, in response to
a prompt, you should orrdt these suffixes. The
system programs append them automatically. To
prevent automatic appending, place a period at
the end of the file name.

When a program-such as a compiler-requires
both a source text file and a destination code
file name, the code file name may be given as
'$'. This indicates the same name as the text
file with .CX)DE appended instead of •TEXT.
Alternatively, you can use '$.', which is the
source file name exactly.

For example, press 'A' to select the
A(ssembler. The system then displays the
following prompt:

Asseml;>le what file?

2-6

Operating System

Enter YOUR.FILE and press <return>. Assuming
that YOUR.FILE.TEXT exists, the system
displays the following prompt:

Code f H e name?

Enter '$' and press <return>.

The preceding sequence assembles the file
YOUR.FILE.TEXT and places the resulting code
in YOUR.FILE.CODE.

You may also use device names when responding
to certain prompts. For example, the
assembler next displays this prompt:

Output fHe for' asembl~d Listing: «CR» for none)

You could enter PRINTER: and press <return>.
The printer is a device (not a file). The
assembled listing is sent there.

2-7

Operating System

DISK SWAPPING

Since the operating system swaps code segments
into and out of main memory while a program is
running; and since you may change disks at
various times, the operating system has various
checks to aid you in handling disks, thus,
reducing errors.

When a program requires a code segment from a
disk, but the disk con taining the code segment
is no longer in the drive, the operating system
displays the following error message on the
bot tom of the screen:

Need Segment SEGNAME: Put volume VOLNAME i~ unit U then type <space>

In the preceding example, the system couldn't
find the disk VOLNAME and waits until you press
<space>. (If you press <space> but haven't
replaced VOLNAME, the system redisplays the
error message.)

2-8

Operating System

OPERATING SYSTEM COMMANDS

This sec tion covers the items on the Command
menu in alphabetical order. Most of these items
are described in greater detail elsewhere.

In particular, the filer is described in Chapter
3 of this manual. Also, the editor is covered
in Chapter 4.

The assembler and linker are covered in a
separate assembler manual.

The compiler and debugger are covered in the
Program Development Reference Manual.

2-9

Operating System Commands: A(ssemble

A(ssemble

On the menu: A(ssem

This command star ts the assembler
SYSTEM.ASSMBLER (note that there is a missing
nEn). If a work file is present, then
*SYSTEM.WRK.TEXT or the designated file is
assembled to a code file of a given machine
code (depending on which of the assemblers has
been named SYSTEM.ASSMBLER). If there is no
work file, the system displays a request for a
source file, a code file, and a listing file;
the defaul ts for these are *SYSTEM. WRK. TEXT,
*SYSTEM.WRK.OODE, and no listing file. If you
simply press <return> for the source file, the
assembly is aborted. Similarly, if you press
<esc> followed by <return> for the code file
or listing file, the assembler is existed.

If the assembler encounters a syntax error, it
displays the error number, and the source line
in ques tion. I t also displays an error
message (if the file *xxxx.ERRORS is present,
where xxxx is the correct processor name, that
is, 280. ERRORS) • It gives you some options:

-Error ,tl': error message"
<sp>(continue), <ese>(term;nate), E(dit

You may continue the assembly by pressing
<space>; abort the assembly by pressing
<escape>; or, proceed directly to the edi tor
to correc t the source fi Ie by pressing , E I •

In the latter case, the system positions the
cursor where the error was detected.

2-10

Operating System Commands: A(ssemble

The assembler is described in a separate
assembler manual.

2-11

Operating System Commands: C(ompile

C(ompile

On the menu: C(omp

This command s tarts the compi ler,
SYSTEM.OOMPILER. If a work file is present,
either *SYSTEM.WRK.TEXT or the designated text
file is compiled to p-code. If there is no
work file, the system displays a request for a
source file and a code file. If you press
<return> for the code file, the default code
is *SYSTEM. WRK.CODE. If you simply press
<return> for the source file, the compilation
is aborted; and, if you press <esc> <return>
for the code file, the compilation is aborted.

Next, the compiler asks for a listing file.
This may be a disk file (such as LIST.TEXT) or
communica tions volume (such as PRINTER:). If
you simply press <return>, no listing file is
generated. If you press <esc> followed by
<return>, the compilation is aborted.

If the compiler encounters a syntax error, it
displays the error number, the source line in
question, and the following menu.

Error #Ill
Line ## .
Type <sp>(continue), <esc>(terminate), or lEI to e(dit

2-12

Operating System Commands: C(ompile

You may continue compilation by pressing
<space>, abort compilation by pressing <esc>,
or proceed directly to the editor to correct
the source file by pressing IE'. In the
la tter case, the editor will position the
cursor where the error was detected.

If the file *SYSTEM.SYNTAX is present, the
Pascal compiler displays a relevant error
message instead of the error number.

The Pascal compiler is described in the
Program Development Reference Manual and the
UCSD Pascal Handbook. The FORTRAN and BASIC
compilers are covered in separate reference
manuals.

2-13

Operating System Corrmands: D(ebug

D(ebug

On the menu: D(ebug

This command starts the symbolic debugger.
The debugger resides within SYSTEM.PASCAL. If
your copy of SYSTEM.PASCAL doesn't contain the
debugger, you need to use the Library utility
(described in the Program Development
Reference Manual) to place DEBUGGER.CODE into
SYSTEM. PASCAL.

The symbolic debugger is a tool for debugging
compiled programs. You can call it from the
Corrmand menu or while a program is executing
(when a break point is encountered). Using
the symbolic debugger, you may display and
alter memory, single step p-code, and do
several other useful debugging operations.

To use the debugger effectively, you must be
familiar wi th the p-machine archi tecture and
must unders tand the p-code operators, stack
usage, variable and parameter allocation, and
so on. These topics are discussed in the
Internal Architecture Reference Manual.

For more informa tion about the symbolic
debugger, refer to the Program Development
Reference Manual.

2-14

Operating System Comnands: E(di t

E(dit

On the menu: E(di t

This command starts the editor, SYSTEM.COITOR.
If a •TEXT work file is present. the system
indicates its availability for editing. If no
work file is present, the system displays a
request for a file name along with the option
to escape from the editor, or to enter the
editor with no file (with the intent of
creating a new one).

Use the editor to create ei ther program files
or document text files and to alter or add to
existing text files. (Refer to Chapter 4,
"System Editors," in this manual, for more
information aoout the editor.)

2-15

Operating System Commands: F(ile

F(ile

On the menu: F(ile

This corrrnand starts the filer, SYSTEM. FILER.
The filer provides functions for managing
files, manipulating work files, and
maintaining disk directories. (Refer to
Chapter 3. "File Management," in this manual,
for detailed coverage of the filer.)

2-16

Operating System Corrrnands: H(alt

H(alt

On the menu: H(alt

This command stops System operation. To
restart the p-System after a H(alt, you
usually need to reboot it. Some systems may
automatically reboot in response to this
command.

On most single user personal computers, use of
the H(alt corrrnand is optionaL It is often
sufficient to remove the system disks and
turnoff the power.

2-17

Operating System Corrmands: I (ni tialize

I (nitialize

On the menu: I (ni t

This command reinitializes the p-System.

*SYSTEM.STARTUP is executed if present.
SYSTEM.STARTUP must be a code file; it is
executed automatically after a bootstrap or an
I (nit corrmand. If SYSTEM.MENU is present, it
is then executed.

All run-time errors that aren I t fatal cause
the system to initialize in the same manner as
I(nitialize. At initialize time, much of the
system's internal data is rebuilt, and
SYSTEM.MISCINFO is reread.

An I (ni tialize corrmand doesn I t clear any I/O
red i rec t i on, but ru n-t ime error
reinitialization does.

2-18

Operating System Commands: L(ink

L(ink

On the menu: L(ink

This command starts the Linker, SYSTRM.LINKER.
The linker allows you to link assembled
machine code routines into host compilation
uni ts (compiled from a high-level language).
It also allows you to link native code
routines together.

It is described in a separate assembler
manual.

2-19

Operating System Commands: M(onitor

M(onitor

On the menu: M(on

This comnand invokes the monitor. The monitor
helps you to create "script files" which drive
the system automatically • While in the
moni tor mode, you may use the p-System in a
normal manner, but all your input is saved in
the script file. Later, you can redirect the
p-System's input to that file and your actions
at the keyboard are reproduced.

Press 'M' to start the M(onitor.
then displays the following menu.

Monitor: B(egin, ECnd, A(bort, S(uspend, R(esume

The system

Press I B' to select the B(egin option. The
system then requests a file name where it will
store your sequence of activi ties. Enter the
file name and press <return>. Then R(esume
and use whatever p-System corrrnands you wish.
When you are finished, select M(onitor again.
Press 'E' to select the E(nd option.

All your input will
named. To use this
input to it with
string.

be saved in the file you
file, redirect the system
the 1= execution option

B(egin starts a monitor. If a monitor file
has already been opened, the system displays
an error message.

2-20

Operating System Commands: M(onitor

E(nd terminates monitor mode and saves the
monitor file. If no monitor file is open, an
error message is displayed. (You must use
S(uspend or R(esume to return to the Command
menu.)

A(bort terminates monitor mode but doesn't
save the monitor file. (You must use S(uspend
or R(esume to return to the Command menu.)

S(uspend turns off monitoring but doesn't
close the monitor file. In other words, you
are returned to the Command menu where you can
now enter corrmands without recording them.
The monitor file remains open and in a state
where you can add to it by using R(esume.

R(esurne starts monitoring again and returns
you to the Command menu. If monitoring wasn't
suspended, no action occurs.

The monitor file can be either a .TEXT file or
a data file. If it is a .TEXT file, you can
use the editor to alter it, but only if the
monitoring hasn't recorded special characters
that the editor doesn't allow.

The M(onitor cOlTll'land itself can never be
recorded in a monitor file.

2-21

Operating System Commands: R(un

R(un

On the menu: R(un

This corrrnand executes the current work file.
If there is no current code file in the work
file, the R(un corrrnand calls the compiler; and
if the compilation is successful, runs the
resulting code. If there is no work file at
all, R(un calls the compiler, which then
displays a request for the name of a text file
to compile.

2-22

Operating System Commands: U(ser Restart

U(ser Restart

On the menu: U(ser Restart

This comnand causes the last program executed
to be executed over again, with all file
parameters equal to previous values. U(ser
restart can't restart the compiler or
assembler. It is useful for multiple runs of
your program.

2-23

Operating System Commands: X(ecute

X(ecute

On the menu: X(ecute

This command executes a program.
the following prompt.

Execute what file?

It displays

You should respond wi th an execution option
string. In the simplest case, this string
contains nothing but the name of a code file
(program) to be executed.

If the code file can't be found, the message:

No fHe <file name>

is displayed. If the program requires
assembled code which hasn't been linked, the
message:

Must Uink first

is displayed. If the code file contains no
program (that is, all its segments are unit or
segment routines), the message:

No program in <file name>

is displayed.

2-24

Operating System COITI'ffinds: X(ecute

If the execution option string contains only
option specifications, they are treated as
described under "Execution Option Strings" at
the end of this section. If the string
contains both option specifications and a code
file name, the options are handled first; and
then the code file is executed, unless one of
the errors named in the preceding paragraph
occurs.

The X(ecu te corrmand is corrmonly used to call
programs that have already been compiled. You
may also use it to simply take advan tage of
the execution options.

The code file must have been created with a
.CODE suffix, even if its name has
subsequently been changed.

Execution-Qption Strings

The X(ecute corrrnand allows you to specify
some options tha t modify the system's
environment. These include redirecting
input and output, changing the default
prefix, and changing the default library
text file. These options are available from
within programs as well as from the X(ecute
corrmand at the keyboard.

2-25

Operating System Commands: X(ecute

All of these options are specified by means
of execution-option strings. An
execution-option string is a string that
contains (optionally) one file name followed
by zero or more option specifications. An
option specification consists of one or two
letters followed by an equals sign (=),
possibly followed by a file name or literal
string.

The following table is a list of the
possible execution options with a sumnary of
their uses.

L = change the default library text file
P change the default Qrefix
PI = redirect £rogram .:!:.nput
ro = redirect £.rogram £utput
I = redirect system input
o = redirect system £utput

Library text files are described in the
Program Development Reference Manual.
Prefixes are covered in this manual in
Chapter 3, "File Management"; and I/O
redirection is explained below.

You may use capital or lowercase letters
wi th execu tion options. Several differen t
execution options may be entered at a single
time. They mus t be separated by one or more
spaces. There may be a single space between
the equal sign (=) and the following file
name or string.

2-26

Operating System Commands: X(ecute

If you are executing a program, you must
specify the name of the program to be
executed before specifying any execution
options. These execution options can be
specified in any order, however.

The following items define the actual order
in which execution options are actually
performed.

1. Change the prefix if the P= option is
present;

2. Change the library text file if the L=
option is present;

3. Perform the I/O redirections (if any are
present, the order of redirection options
is irrelevant).

4. Execute the file if specified.

The execution options are described in the
following paragraphs. They may be called by
using the X(ecute command. Redirection from
within your program may be accomplished
through procedures in a unit called
COMMANDIO. See the Program Development
Reference Manual for more information.

2-27

Operating System Conmands: X(ecute

Prefixes and Libraries

You can change the default prefix with the
P= execution-option string. After this is
done, all file names that don't explicitly
name a volume are prefixed by the default
prefix. This is equivalent to using the
P(refix command in the filer.

To change the default prefix, press 'X' to
select X(ecute. Enter 'p=disk2' and press
<return>. The prefix is now DISK2:.

You can change the default user library
text file in the same way. The library
text file is a file that contains the
names of your libraries. When you run a
program with separately compiled units,
the system searches for them firs t in the
files named in the library text file and
then in *SYSTEM.LIBRARY. When the system
is booted, the default library text file
is *USERLIB.TEXT. (This is all covered in
the Program Development Reference Manual.)

To change the default library text file,
press 'X', then enter 'L--mylib' to make
the file MYLIB. TEXT the new default
library text file.

Enter 'prog l=mylib' to make the file
MYLIB. TEXT the new library text file and
execute the file PROG.OODE.

2-28

Operating System Commands: X(ecute

Redirection

The following execu tion-option strings
control redirection:

PI = <file name>
PI <string>
PO <file name>
I <file name>
I <string>
o <file name>

PI= redirects Erogram .!.nput. PI=<file
name> causes the input to a program to
come from the file named. PI=<string>
causes the input to a program to come from
the program's scratch input buffer and
appends the string given to the scratch
input buffer (scratch input buffers are
discussed in the following paragraphs).

PO= redirects .2!ogram ,£utput. PO=<file
name> causes program output to be sent to
the file named.

PI= overrides any previous input
redirection. Likewise, PO= overrides any
previous output redirection. Using PI=
(PO=) without a file name makes program
input (output) the same as system input
(output).

2-29

Operating System Coornands: X(ecute

1= redirects system input. I=<file name>
causes system input to corne from the file
named. I=<string> causes system input to
corne from the system's scratch input
buffer, and appends the string to the
scratch input buffer. Scratch buffers are
described in the following paragraphs.

0= redirects system output. CF<file name>
causes system output to be sent to the
file named.

Like PI=, 1= overrides any previous 1=;
and like PO=, CF overrides any previous
CF. Using 1= without a file name resets
system input to CDNSOLE:. Using CF
wi thout a file name resets system output
to (X)NSOLE:.

For PI=<file name> and I=<file name>, the
<file name> may specify either a disk file
or an input device that sends chara.cters.
If the fi Ie is a disk file, redirec tion
ends at the end of the file; and the
system performs the equivalent of an input
redirection wi th no file name, thus
resetting input. If the file is a device,
redirection continues until you explicitly
change it. This allows you to control the
system from a remote port (such as
REMIN:) •

2-30

Operating System Comnands: X(ecute

For PO=<file name> and O=<file name>, the
<file name> may specify either a disk file
or an output device that receives
characters. If the file is a disk file,
it is named literally as shown; that is,
to make it a text file, you must
explicitly type •TEXT • Whenever output
redirection is changed, the file is closed
and locked.

For PI=<string> and I=<string>, the
<string> may be any sequence of characters
enclosed in double quotes ("). A comna
within the string indicates a carriage
return. Any double quote embedded in the
string must be pressed twice.

When input is redirected to a string, that
string is placed in a first-in-first-out
queue called the scratch input buffer.
Anything that already exits in the scratch
input buffer is read before the quoted
string. The p-System has an area of
memory devoted to its scratch input
buffer. A program has a separate scratch
input buffer of its own. If there is
nothing already in the scratch buffer, it
is as if input is taken irnnediately from
the string itself.

If you redirect input to corne from both a
file and a scratch input buffer, the
seratch buffer is used first.

2-31

Operating System Con'Imnds: X(ecute

Program redirection ends when the program
terminates. If there are still characters
in the program's scratch input buffer,
they aren't used.

System redirection ends when the system
terminates with a halt or a run-time
error. An I (nitialize cormJand doesn't
alter system redirec tion. The system's
scratch input buffer is lost when system
redirection terminates.

NOTE: The redirection applies only to
high-level I/O operations, such as WRITELN
and READLN in Pascal. Lower-level I/O
operations, such as UNITREAD and
UNITWRITE, are NOT intercepted, thus,
can't be redirected. Also, BLOCKREAD and
BLOCKWRITE aren't redirected. This means
that if you redirect a program which uses
any of these operations, they won't be
redirected.

Redirection also can't affect calls in the
following form because these calls don't
involve the standard input and output
files.

REWR ITE <r'lY FILE,' CONSOLE: .);
WRITE<MYJILE, LOTS_Of_TEXT)

2-32

Operating System Comnands: X(ecute

Here is a simple example of redirec ting
the system input to a string:

Execute what file-? I=IIFL*,QlI

This causes the p-System to enter the
filer (' F'), list the directory on the
boot disk (' L* , ') , remember tha t cooma
means <return>, and Q(uit the fiJer ('Q').

To redirect program input to the file IN
(which might have been created using
M(onitor), and program output to the file
OUT, for a program called PROG.OODE; press
'X' to call the X(ecute command and
respond:

Execute what fi le? PROG PI=IN PO=OUT

To stop system input redirection, enter
'I=' .

If you enter:

PO= storeme.text PI= I="fgRUNI'IE,qr" P=WORK2

2-33

Operating System Corrrnands: X(ecute

The p-System performs these actions:

• Makes the default prefix WORK2:

• Redirects program output to the file
WORK2 :STOREME. TEXT

• Turns off program input redirection

• Follows the script "fgRUNME,qr"
f: enter the filer;
gRUNME,: G(et the work file

WORK2 :RUNME. TEXT and
WORK2:RUNME.OODE;
(The comma acts as a carriage return.)

q: Q(uit the filer
r: R(un the program WORK2:RUNME.OODE;
(Note that its output has been redirected).

The following entry does the same thing.

PO= storeme., text PI= I="fpIlORK2: ,gRUNME,qr"

2-34

CHAPTER 3

F I L E

MANAGEMENT

File Management

INTRODUCTION

This chapter covers topics which are relevant to
managing the files on your disks.

First, files and volumes are described in
general. File and volume narrdng conventions are
covered. Also, the different types of files and
volumes are presented.

Second, the work file is introduced. This is a
special "scratch pad" file that you may want to
use if you plan to develop programs.

The filer is then introduced. The filer is the
p-System I s major file handling facility. It
allows you to view the files on a disk volume,
move them around, remove them, and so forth.
Its menu is introdvced. Also, a more advanced
feature called wild cards is covered. Wild
cards may be used, in conjunction with the
filer's prompts, to work with several files at
one time.

The next section describes how you can attempt
to recover any files that you accidentally
loose. If you inadvertently remove a valuable
file, for example, the procedures outlined here
should assist you in retrieving it.

Subsidiary volumes are covered next. Subsidiary
volumes allow you to have two levels of file
directory information. More files can be stored
on a disk if you use subsidiary volumes.

3-3

File Managernen t

User-defined serial volumes are then introduced.
If your p-System is set up to use these, you can
take advantage of extra serial I/O peripherals
(such as extra terminals or printers).

Finally, the filer activi ties are described in
detail.

3-4

File Management

FILE ORGANIZATION

A file is a collection of information that is
stored on a disk and referenced by a file name.
Each disk contains a directory that has the name
and location of every file that resides on it.
A disk directory rmy hold as rmny as 77 files.
If you need more on single disk (which can
easily be the case if you are using large
capaci ty hard disks), you can use subsidiary
volumes. (Subsidiary volumes are described
later in this chapter.)

A file rmy contain any sort of data and be
organized in many ways. Depending on the type
of file, which is usually indicated by the file
name suffix, the system treats it in specific
ways. For example, your files rmy contain text
such as letters and memos, or they may contain
executable code. The p-System recognizes these
differences.

Disks (sometimes known as "s torage volumes")
have "volume names." Sometimes disks are
referenced by "device number" (described later).
The term "volume 10" refers to a volume name or
device number of a given storage volume.

The filer is a program that you start from the
Command menu. It provides a variety of
func tions tha t allow you to create, name and
rename files, remove them, transfer them around,
print them, and so forth.

3-5

File Management

File and Volume Names

Many filer prompts require you to respond with
a file or volume name. In fact, many p-System
prompts, in general, require this. Figure 3-1
illustrates the technical syntax for file
names, and Figure 3-2 shows the syntax for
volume names.

<file specification>

Figure 3-1

3-6

volume
name

Figure 3-2

3-7

File Management

File Management

The legal characters that you may use for file
and volume names are:

• The alphabetic characters (A through Z)

• The numeric characters (0 through 9)

• Hyphen (-)

• Slash (I)

• Back slash (\)

• Underline ()

• Period (.)

File names can be, at mas t , 15 characters
long. Here are some valid examples of file
names:

A.FILE NAME
. MEMO.T~XT

PROGRJlM/3. CODE

Here are some INCORRECT examples:

. A,SAD,NAME
MORE THAN 15 CHARS
#$*&=-L - -

3-8

File Management

Volume names may be, at most, seven characters
in length and are followed by a colon. Here
are some correct examples:

VOLNAIIE:
VOL 2:
1234567:

Here are some INCORRECT volume names:

NOTCORRECT:
VOLS2:
SAY:HI:

Volumes may also be referenced by "device
number." A device number consists of a number
sign (#) followed by a number, usually
followed by a colon. Here are some examples:

#1
#1 :
#4
#4:
#5
#9:

The colon is optional unless the device number
is followed by a file name, as described
below. (The colon is required after a volume
name, however, to distinguish it from a file
name.)

3-9

File Management

Disk drives usually have the device numbers #4
and 115, and sometimes 119, #10, #11, #12, and
even greater numbers. (Subsidiary volumes and
"user-defined serial devices" may also use
device numbers #9 and higher.) When you refer
to a volume by device number, you are
indica ting the disk which happens to be in
that drive at that time.

The asterisk (*) is shorthand for the volume
ID of the system disk. The colon (:) is
shorthand for the volume ID of the default
disk (as described below). The system disk
and default disk are equivalent unless the
defaul t prefix is changed. You can change it
with the P(refix activity. Sometimes the
system disk is also called the boot disk.

Lowercase letters are translated to uppercase.

You may indicate the volume on which a file
resides by using the volume name or device
number (with colon) followed by the file name.
Here are some examples:

.I'IY.DISK:I'IY.FlLE·
DISK2:I'IY.FILE
#4: ANOTHER :TEXT

. #5 : PROGR AI'I. CODE
*BOOT •.DISK. FI~E

3-10

File Management

In the first two cases, the file MY. FILE is
indicated, but on two separate volumes. The
next two cases specify files on the disks in
drives #4 and #5. The final example indicates
a file on the system disk.

If you don't indicate a volume ID to go with
your file name, that file is assumed to reside
on the default disk. If, for example, the
defaul t disk is called "MYDISK:" and you
answer a file name prompt with "A.FILE," the
p-System assumes (by "default") that you are
referring to "MYDISK:A.FILE."

When a file is being created, its name may be
followed by a size specification having the
form '[n] I, where n is an integer specifying
the number of blocks that the file must
occupy. For example, A.FILE.OODEf12] is made
to occupy 12 blocks.

The following items describe some special
cases:

• [0] Equivalent to omitting the size
specification. The file is created in the
largest unused area•

• [*] The file is created in the second
largest area or half the largest area,
whichever is larger.

3-11

File Management

File Name Suffixes

User files are generally one of three types:
program or document text, compiled or
assembled program code, or data in a
user-defined format. The suffix of a file
name usually indicates its file type.

The following list summarizes the file
suffixes:

•TEXT Human readable text, formatted for
the editors •

•BACK Same as a text file.
backup purposes •

Used for

•mOE Executable code, either p-code or
machine code•

•FOTO A file containing one graphic
screen image•

•BAD An unmovable file covering a
physically damaged area of a disk •

•SVOL A file containing a subsidiary
volume.

Oa ta files, which contain data in a
user-specified format, don't have any special
suffix.

3-12

File Management

Here are some example fi Ie names which use
these suffixes:

A.POEIl.TEXT
DOCUIlENT.BACK
A PROG.CODE
FIGURE1. FOTO
BAD.00042.BAD
IlYVOL.SVOL
A_DATA_FILE

.TEXT files contain human-readable information
such as letters, poems, documents and so
forth. .BACK files are backup files for text
files. .TEXT and .BACK files contain a header
page followed by the user-written text,
interspersed with a few special codes. The
header page contains internal information for
the editors. The filer transfers the header
page from disk to disk, but never from disk to
an output device such as the PRINTER: or
CONSOLE: •

All files created with a suffix of •TEXT have
the header at tached to the front. They are
treated as text files throughout their lives.

The header page is two blocks long (1024
bytes), with the remainder of the file also
organized into two-block pages. A page
contains a series of text lines, and is padded
at the end with at least one NUL character.

3-13

File Management

Each line of text is terminated with an ASCII
CR. A line may begin with a blank-compression
pair which consis ts of an ASCI I OLE followed
by a byte whose value is 32+n, where n is the
number of characters to indent. Text lines
are typically 0 through 80 characters long to
fit on standard terminals •

•CODE files contain either compiled or
assembled code. They begin with a single
block called the segment dic tionary , which
contains internal information for the
operating system and linker. Code files may
also contain embedded information. Refer to
the Internal Architecture Reference Manual for
detailed description of code files •

•FOTO files hold a graphics screen image and
are used in conjunction with Turtlegraphics •

•SVOL files contain subsidiary volumes which
are discussed later in this chapter•

•BAD files are stationary files used to cover
physically damaged portions of a disk.

All of the filer functions (except G(et and
S(ave) that reference specific files require
the file name suffixes. G(et and S(ave supply
these suffixes automatically to aid you in
using the work file.

3-14

File Management

Devices and Volumes

A volume is any I/O device, such as the
printer, the keyboard, or a disk. A storage
device (sometimes known as a
"block-structured" device) is one that can
have a directory and files, usually a disk of
some sort. A communication device (also known
as a "nonblock-structured" device) doesn't
have internal structure; it simply produces or
consumes a stream of da ta. For example, the
printer and console are communication devices.

Appendix C illustrates the reserved volume
names and device numbers used to reference the
standard commmica tion and storage devices.

The system dis tinguishes between storage and
corrrnunication devices. Storage devices are
usually disk drives. They con tain volumes
that have a directory and files. Internally,
a volume is organized into randomly
accessible, fixed-size areas of storage called
blocks, each containing 512 bytes. Files may
vary in size, but are always allocated an
integral number of blocks.

Communication devices include printers,
keyboards, and remote lines. They have no
internal structure and deal with serial
character streams. Communica tion devices may
perform input functions, output functions, or
both.

3-15

File Management

A device or a file may be either a source of
data or a destination for data. Many of the
filer's data transfer operations apply to
devices as well as to files.

The name of a device that contains removable
volumes, such as a floppy drive, is the name
of the volume it contains at any given time.
The number of that device never changes.

The name of a disk file includes, as a prefix,
the disk on which it resides. The system
always has one default prefix-when the system
is first booted it is the system disk-so that
you need not type out the prefix every time a
file is required.

For example, SYSTEM:SAVEME.TEXT and
TABLES:SAVEME.TEXT name two different files on
two different disks (both files are called
SAVEME) • These might also be specified as
#4:SAVEME.TEXT and #5:SAVEME.TEXT. If you had
changed the default prefix to TABLES:, then
entering SAVEME. TEXT would be understood to
mean TABLES: SAVEME. TEXT •

3-16

3-17

File Management

File Management

WORK FILES

The work file is a scratch pad for creating and
testing files. The work file is often stored
temporarily in *SYSTEM.WRK.TEXT and
*SYSTEM.WRK.CODE. These may be either newly
crea ted files or copies of exis ting disk files
that have been designated as the work file.

Many system programs assume tha t you are working
on the work file unless you specify otherwise.
You may create the work file by designa ting
existing files or by creating a new file with
the editor.

Modifying the work file can cause temporary
copies to be generated, which-until they are
saved-are placed in the directory under the
following names.

*SYSTEM.WRK.TEXT
*SYSTEM.WRK.CODE and
*SYSTEM.LST.TEXT

You can create *SYSTEM. WRK. TEXT by leaving the
editor if you use Q(uit U(pdate. Then a
successful compile or run creates
*SYSTEM.WRK.CODE. If the compilation is
successful, the R(un command goes on to
immediately execute the code. The compiler may
optionally crea te *SYSTEM.LST.TEXT, a compiled
listing.

3-18

File Management

Whenever the editor alters a program con tained
in *SYSTEM.WRK.TEXT, the R(un command recompiles
it in order to update *SYSTEM. WRK.CODE.

The filer can S(ave these files under permanent
names. You can also use it to designate a new
work file with the G(et corrmand or to remove an
old one with the N(ew cornnand. The filer can
also tell you W(hat your work file's name is.

3-19

File Management

USING THE FILER

Filer Menus

With the Command menu displayed, press 'F' to
enter the F(iler. The system displays the
following menu.

Filer: G(et, Slave, W(hat, N(ew, L(dir, R(e., C(hng, T(rans, D(ate?

En ter ' ? I • The system then displays more
filer functions:

Filer: Q(uit, B(ad-blks, E(xt-dir, K(rnch, "lake, P(refix, V(ols?
Filer: X(amine, Z(ero,'On/off-line, F(lip-swap/lock

The individual filer functions are selected by
entering the letter found to the left of the
parenthesis. For example, 'S' would call the
S(ave function.

In the filer, answering a Yes/No question with
any character other than 'Y' or 'y'
constitutes a no answer. Pressing <esc>
returns you to the main F(iler menu.

Many activities display a prompt asking for a
file or volume name. We have already
discussed what file and volume names are. You
can, of course, use a volume ID as part of a
file name when responding to these prompts.
In some cases, EITHER a file or a volume may
be indicated.

3-20

File Management

If you specify a file on a volume (or just a
volume) tha t the filer can't find, the system
displays the following message:

HAilE: Ho such vol on-l ;ne <source>·

If two or more on-line volumes have the same
name, the filer con tinuously displays a
warning.

NOTE: Although sorretimes it may be necessary
to have two volumes with the same name on-line
at the same time, try to avoid this. You can
confuse the p-System and accidentally destroy
valuable information on one of the volumes!

Whenever a filer function requests a file
specification, you may specify as many files
as desired by separating the file
specifications with corrrnas and terminating the
file list with a <return>. Cannands operating
on single file names read file names from the
file list and operate on them until none are
left.

Commands operating on two file names (such as
C(hange and T(ransfer) take file
specifications in pairs and operate on each
pair until only one or none remains. If one
file name remains, the filer displays a menu
requesting the second member of the pair. If
an error is detected in the list, the
remainder of the list is flushed.

3-21

File Management

Wild Cards

Wild cards allow the filer to perform its task
on several files at a time. There are three
wild card symbols: equal sign (=), question
mark (?), and dollar sign ($).

The equal sign and ques tion mark are used to
specify subsets of the directory. The filer
performs the requested action on all files
meeting the specification.

The equal sign matches any string. For
example:

:.TEXT

matches all of the following:

FILE1.TEXT
FILE2. TEXT
ANOTHER. TEXT

If a question mark is used in place of an
equal sign, the filer requests verification
before performing the function on each file
matching the wild card specified. For
example, if you want to R(emove some, but not
all text files on a disk, you could use
'?TEXT' and you are prompted for each file if
you want it removed.

3-22

File Management

A wild card specification must be of the form:

$

=<string>
?<string>
'<string>:
<string>?
<5 t ri ng>=<s tf" ing>
<string>?<stf"ing>

The first two cases, where there is no string
to match, is understood to specify every file
on the volume. So pressing '=' or '?' alone
causes the filer to perform the appropria te
action on every file in the directory. Only
one wild card character can occur in a
specification.

The following paragraphs describe the use of
the filer with wild cards.

The following lis ting is the directory for
volume DISK1:.

TEMP1 6 1-J an-83
··OLD.TEXT'.. 4 1-Jan-83'

EXAMPLE1 .CODE . 10. 1-Jan-83-
. EXAMP.LE2. CODE 4 1-J an-S3
.NEW. TEXT 12 1-Jan-83
TEMP2 5 1-J an-83
TEMP. CODE 2 . 1-J an-83
t.ine 'count error,_ count= 7

3-23

File Management

Wi th the Corrrnand
call the F(iler.
R(emove option.
following prompt:

Remove what fiLe?

menu displayed, press 'F' to
Then press 'R' to use the

The system will display the

Enter 'TEMP=' press <return>.

The system then displays the following
listing:

DISK1:TEMP2 removed
DISK1: TEMP. CODE removed
Update directory?

To verify and complete this operation, press
'y' • To stop the operation, press 'N'. If
you press 'N', the files won't be removed.

Using the same directory to lis t a specified
set of files, press 'F' (shown on the C'A)I'I'Il18.nd
menu) and then press 'L I to use the L(ist
option. The system will display the following
prompt:

Dir listing of what vol?

Enter '=TEXT' and press <return>. The system
will display the following listing:

OLD. TEXT
NEW. TEXT

4 1-Jan-83
12 1-Jan-83

3-24

File Management

The subset-specifying strings may not overlap.
For example, EXAMPLE. C=CODE wouldn't speci fy
the file EXAMPLE. CODE , whereas EXA=OODE would
be a valid specification.

In any file name pair, you may use the
character '$' to signify the same file name as
the first name, perhaps with a different
volume ID or size specification.

Press 'F' (Command menu) and then press 'T' to
select the T(ransfer option. The system will
display the following prompt:

Transfer what file?

En ter '#5: RE. USE. TEXT, *$, and press <return).
The system now transfers the file RE. USE. TEXT
on device #5 (a disk drive) to the system disk
(*), which is also device #4. The name
won't be changed. The system will display the
following message:

WORKSET:RE.USE.TEXT->SYSTEM:RE.USE.TEXT

3-25

File Management

RECOVERING LOST FILES

When a file is removed, it is actually removed
from the directory, not the disk. The
information that it contained remains on the
disk un til another file is writ ten over it
(which could happen at any time, since the filer
considers it usable space).

If a file is accidentally removed, be careful
not to perform any actions (whether from the
system or from your program) that write to the
disk, since they might write over the lost file.
The K(runch function is Virtually certain to do
this; avoid it.

Wi th the Corrmand menu displayed, press I F I to
call the F(i ler and then press ' E I to use the
E(xtended list function. The E(xtended list
function will display the names of files in the
directory and any unused blocks that may have
once contained files. Sometimes, by looking at
the size of unused areas and their location in
the directory, you can tell where the lost file
was located.

With the F(iler menu displayed, press 'M' to use
the M(ake function. You should then enter a
file name and the size in blocks (enclosed in
brackets) of the lost file.

3-26

File Management

To recover a lost file with the M(ake function,
the size specification should match the size of
the file that was lost. If you remember the
size, or if the lost file took up all the space
between two files that are still listed in the
directory, recovery is easy.

The M(ake function creates a file (of the size
that you specify) at the beginning of the first
available location on the disk which is at least
that large. To fill up any unused (and
unwanted) space that precedes the location of
the lost file, use the M(ake function to create
dwrmy files. (Later, you may remove these
"filler" files.)

The following is an example of a listing made
using the E(xtend list function:

WORK:
SYSTEM.MISCINFO 1 1-Jan-83 6 512 Datafile
< UNUSED > 1 7
SYSTEM.SYNTAX 14 1-Jan~83 8 512. Datafile
REM.WRK.CODE .4 1-Jan-83 . 22 512 CodefiLe
< UNUSED > 75 . 26
MYFILE. TEXT 20 1-Jan-83 Hl1 512 T.extfiLe

.< UNUSED> 373 121 . .
4/4 files<listed/in-dir>, 45 blocks' used, 449 unused, 373 in largest

3-27

File Management

MYFILE.cxmE was four blocks long and was located
just after MYFILE.TEXT. To create it, press 'M'
(F(iler menu) to use the M(ake function and
enter FILLER[75] • This procedure fills up the
75 blocks of unused space on the disk. Next,
using the M(ake function, create a file with the
following specifications: MYFILE.CODE[4].
MYFILE.CODE is created (once again) immediately
following MYFILE.TEXT. Finally, use the R(emove
function to delete FILLER from the directory.

The following extended listing results from this
procedure.

WORK:
SYSTEM.MISCINFO . 1 1-Jan-83 6 512 Datafi le.
< UNUSED > 1 7
SYSTEM. SYNTAX . 14 1-/an-83 8 512 Datafi le
REM.WRK.CODE 4 1-Jan-83 22 512 ·Codefile
< UNUSED > 75 26
MYFILE.TEXT 20 1-Jan-83 101 512 Textfile·
MYFILE.CODE 4 1-Jan-83 121 512 Codefile
< UNUSED > 369 125
5/5 files<listed/in-dir>, 49 blocks used, 445 unused, 369 in largest

NOTE: To X(ecute a code file, you must have
created it with a .CODE suffix. (Later, you may
change the code file name.) If you lose a code
file that doesn't have a .CODE suffix (for
example, SYSTEM. FILER) you must recreate the
file with a .CODE suffix (for example,
FILER.CODE) and then again change the name back
to SYSTEM. FILER. If you don I t do this, the
recreated file won't be executable.

3-28

File Management

The RECOVER utility, described in Chapter 5, can
help you find files when you can't remember or
detennine where they were located on the disk.
REOOVER scans the directory for entries that
look valid. If that search doesn't yield the
desired file, RECOVER attempts to read the
entire disk looking for areas that resemble
files and asks you if you want then recreated.

Another alternative is to use the PATCH utility
to manually search through the disk. Once the
file has been found, use M(ake to create the
proper directory.

If a directory entry seems erroneous or
confusing, you may use the PATCH utility to
examine the exact contents of the directory.
(Refer to the Program Development Reference
Manual.)

Duplicate Directories

A duplicate directory can assist you in
recovering from the situa tion where the main
directory has been destroyed. The main
directory spans blocks 2 to 5 on a disk. If a
duplicate directory is present, it spans
blocks 6 to 9. Every time the directory is
altered, the duplicate directory is updated as
well, thus providing a convenient backup. (A
duplicate directory won't help you if you
acciden tally remove a file since the file is
removed from both directories at the same
time.)

3-29

File Management

If a directory is corrupted on a disk that has
a duplicate directory, you may use the
COPYDUPDIR utility to simply move the
duplicate directory to the location of the
standard disk directory. Sometimes this is
all that is required to recover a disk.

There are two ways to place duplicate
directories on a disk. The first is to
instruct the Z(ero function ,to do this when
you are initializing a disk's directory. When
the prompt I Duplicate dir?' appears, press
'Y' for yes. This prompt also appears in the
M(ake function when you are creating
subsidiary volumes. In this case, you can
create a duplicate directory for the
subsidiary volume if you wish.

If you are already using a disk that contains
only one directory, you can use the MARKDUPOIR
utili ty to create a duplicate directory
(without having the zero the volume).
However, be careful when using this utility.
Blocks six to nine of the disk-the location
of the duplicate directory-must be unused; if
not, file information will be lost.

If a directory is lost, and no duplicate
directory was present, use the RECOVER utility
as previously described.

3-30

File Management

CAUTION: You will destroy the directory if
you use the F(iler E(xtended list or L(ist
functions and specify an optional output file
as a disk volume without a file name. (The
listing is written on top of the directory.)

EXAMPLE:

The L(ist directory prompts:

Di r listing of what vol ?

Response:

MYDISK:, MYDISK: <return>

Response:

Either of these responses cause the first few
blocks (aproximately 6) of MYDISK: to be
overwritten with a listing of the directory of
MYDISK: •

Response:

M\-DISK:, DISK2:

This causes the directory of DISK2:
overwritten.

3-31

to be

File Management

I n the lat ter case, you must use the disk
recovery methods already desribed. In the
first two cases, recovery isn't so difficult,
even if there wasn't a duplicate directory,
since the MYDISK: directory has been
overwritten with what is essentially a copy of
itself.

First, get a copy of the directory listing of
MYDISK:. (If MYDISK: was the system disk,
you must boot another system.) Use the filer
to T(ransfer 'MYDISK:' to the printer, like
this:

'Transfer what fi le? /'lYOISK:, PRINTER:

Generate hard copy of the directory and then
use the filer to Z(ero MYDISK:. The Z(ero
function won't alter the contents of MYDISK:,
only the directory itself. Now use the M(ake
function to remake all of the files on the
disk (as described in the preceding
paragraphs).

3-32

File Management

SUBSIDIARY VOLUMES

The purpose of subsidiary volumes is to provide
two levels of directory hierarchy and to expand
the p-System's ability to use large storage
devices such as Winchester disk drives.
Currently, p-System disk volumes contain a
4-block directory located in blocks 2 through 5.
The rest of the disk contains the actual files
described in the directory. The size of the
directory allows for a maximum of 77 files to
reside on the corresponding disk image.

Subsidiary volumes are virtual disk images that
actually reside within a standard p-System file.
The disk that contains one of these files is
called the principal volume. Each subsidiary
volume may contain up to 77 files.

A subsidiary volume appears in the directory of
the principal volume as a file. Subsidiary
volume file names can have a maximum of seven
characters and must be followed by the suffix
".SVOL." The following listing is an example •

. "AIL.SVOL
-TESTS.1.SVOL

DOC_B.SVOL

3-33

File Management

The subsidiary volume disk image resides within
the actual .SVOL file. The directory format and
file formats are the same as for any other
p-System disk volume. The volume name of the
subsidiary volume is tha t portion of the
corresponding file name that precedes the
".SVOL." For example, the three preceding files
would contain the following subsidiary volumes:

"'AIL:
TESTS.1 :
OOC_B":

Creating and Accessing SVOLs

To create a subsidiary volume, use the filer
M(ake func tion and the file name suffix,
.SVOL. As with any other file the M(ake
function creates, the subsidiary volume
occupies:

1. All of the largest contiguous disk area if
created as follows:

"'ake what file? OOCS.SVOL

2. Half of the largest area or all of the
second larges t area, whichever is larger,
if created as follows:

3-34

File Management

3. A specified number of blocks, in the first
area large enough to hold that many blocks,
if created as in the following examples:

Make what file? DOCS.SVOL[200J
Make what file? DOCS.SVOLr1S00J

An • SVOL file must be made a t leas t 11 blocks
long.

After you enter the •SVOL file name, the
system sometimes displays this prompt:

Zero subsidiary ·volume directory?

I f you respond with a 'Y', the directory of
the new subsidiary volume is zeroed. If you
press an 'N',· the direc tory isn't zeroed; and
any files that may have existed on a previous
subsidiary volume in the same location
reappear within the directory. In both cases,
the number of blocks indicated within the
directory always correspond to the size of the
actual •SVOL fi Ie. If this prompt isn't
displayed, then there wasn't a previous
subsidiary volume directory where you are
creating the current •SVOL file. In this
case, the new subsidiary volume is
automatically zeroed.

3-35

File Management

The next prompt which is almos t always
displayed is:

Dupl ; cate di r?

You should respond with 'Y' if you want a
duplicate directory to be maintained on the
subsidiary volume, and 'N' otherwise.
Duplicate directories were covered earlier
under "Recovering Lost Files."

Subsidiary volumes may not be nested. That
is, an .SVOL file may not be created within
another .SVOL file.

When you create a subsidiary volume, it is
automatically mounted unless the maximum
number of subsidiary volumes has already been
mounted. (Moun ting and dismounting of
subsidiary volumes is described in the next
section.) You may then access and use it like
any other p-System volume. The filer
function, V(olumes, then displays a listing
which indicates that the new volume is on-line
and shows its corresponding device number; for
example, #13:.

You may use either volume name or the device
number when referencing the subsidiary volume.
You may now place files on the new subsidiary
volume, and all of the applicable file
activities may reference it.

3-36

File Management

Mounting and Dismounting SVOLs

A mounted subsidiary volume is subtly
different from an on-line subsidiary volume.

To iden tify a subsidiary volume as mounted
means that the p-System knows the volume
exists and sets aside a device number for
it; for example, #13:. You mus t mount a
subsidiary volume before you can use it.
While it is mounted, only that specific
subsidiary volume corresponds to that device
number.

A subsidiary volume stays mounted until you
dismoun tit. Once mounted, it is on-line
any time its principal volume is in the disk
drive. It is off-line when the principal
volume has been removed from the disk drive.

CAUTION: There is a danger of confusing
the system if two principal volumes each
contain a subsidiary volume in the same
location with the same name. This might
easily be the case where backup disks are
used. If these principal volumes are
swapped in and out of the same drive, and
the similar subsidiary volumes are accessed,
the filer may become confused in the same
way that it can when any two on-line volumes
have the same name.

3-37

File Management

CAUTION: I f you write programs, be careful
when using low-level I/O routines (like
UNITWRITE) with subsidiary volumes. If you
remove a principal volume from a disk drive
and insert another disk, these low-level
routines have no way of knowing that the
subsidiary volumes that were mounted on the
original disk are no longer present. Under
these circumstances, doing a UNITWRITE to
absent subsidiary volumes will overwrite
data on the disk presently occupying the
disk drive.

When you boot the p-System, all of the
on-line disks are searched for .SVOL files.
The corresponding subsidiary volumes are
then mounted. The same process occurs
whenever the p-System is initialized (by the
I (ni tiali ze cornnand or after an execu tion
error) •

The booting or ini tializing process mounts
as many subsidiary volumes as it finds as
long as there is room in the p-System unit
table. If the unit table becomes full, no
more subsidiary volumes are mounted; and no
warning is given. (The maximum number of
subsidiary volumes is discussed a little
later.)

After booting or initializing, if you place
a new physical disk on-line, you must
manually mount any subsidiary volumes
contained on it if you want to access them.

3-38

File Management

To mount or dismount subsidiary volumes, use
the O(n/off-line function. From the main
F(iler menu, press '0'. The system will
display the following menu:

Subsidiary Volume: M(ount, D(ismount, C(lear

Press 'M'. The system display this prompt:

fltount what vol ?

To dismount a subsidiary volume, press 'D'.
The system displays this prompt:

D·i smount what". vo l 7"

Suppose that a principal volume, P_VOL:,
contains the following files:

P VOL:
~FILE1. TEXT·

l'lLE1.;CQDE
VOL1.SVOL
FILE2.TEXT
FILE2. CODE.
DOC1.SVOL
-FUN-.SV:0L

3-39

File Management

To mount subsidiary volumes on P VOL:, you
can respond to the mount prompt with the
file name, as in the following examples:

Mount what volume? VOL1; SVOL<return>"
Mount what vol? VOL1.SVQL,-FUN-.SVOL<return>

. Mount what vol ~ P VOL:=<r~turn>

'. M~unt 'what 'vol 1: ti~: =<retvrn> .

The first example mounts VaLl:, the second
mounts VaLl: and -FUN-:, the third mounts
all three subsidiary volumes on P VOL:, and
the fourth example moun ts all subsidiary
volumes on the disk in drive #5:.

To dismoun t any of these volumes, you can
respond to the dismount prompt with the
VOLUME ID as in the following examples:

D"i~mount··wh~t "vol? #14:
Dismount what voL? VOL1:<return>
Dismount what vol? VOL1:,· DOC1:, FUN:<retur"n>

The first example dismounts the subsidiary
volume associated with device number #14.
The second example dismounts VaLl:, and the
third example dismounts three subsidiary
volumes.

3-40

File Management

The other item on the O(njoff-line menu is
C(lear. When this is selected, all
subsidiary volumes are dismounted.

There is a maximum number of subsidiary
volumes that you may mount at one time. You
can set this number, which is subject to
memory constraints and tradeoffs. The
maximum number of subsidiary volumes is a
field in SYSTEM.MISCINFO and is configured
using the SETUP utility (Which is covered in
the Adaptable System Installation Manual).

NOTE: If you C(hange either the name of a
subsidiary volume or the name of the
corresponding .SVOL file, it is a good idea
to change them both to the same name. For
example, if you want to change either of
these:

MYVOL.SVOL
MYVOL:

You should C(hange both of them in the same
way:

NEWNAME.SVOL
NEWNAME:

If you don't do this, the •SVOL file and its
corresponding subsidiary volume won't have
the same name which might be confusing.

3-41

File Management

NOTE: If you want
subsidiary volume to
file-by-file method:

. Transfer ·what fi Le? SVOL':;
To where?" SVOL?:$.

to T(ransfer
another, use

one
the

It isn't a good idea
volume-to-volume T(ransfer.

to do a

NOTE: If you need to extend the size of a
subsidiary volume, do not use the DISKSIZE
utility. You should M(ake another
subsidiary volume the size you want and
transfer the files from the old subsidiary
volume to the new one.

Installation Information

I t is very simple to ins tall the subsidiary
volume facili ty if you use the SETUP utili ty
to set MAX NUMBER OF SUBSIDIARY VOlS to the
smallest convenient value. This will be the
maximum number of subsidiary volumes that are
allowed to be mounted atone time. (Each
addi tional subsidiary volume requires a few
extra bytes wi thin the p-System 's uni t table.
This is why you should keep this number as
small as possible.) When you have set this
field, the subsidiary volume facility is
available.

3-42

File Management

USER-DEFINED SERIAL DEVICES

device facility allows
of special serial I/O

You can use this
standard serial I/O

and REMOUT:), on some

The user-defined serial
you to take advantage
hardware capabilities.
facility, along with the
devices (CONSOLE:, REMIN:,
computers.

You may have up to 16 user-defined serial
devices, in addition to a printer, a console and
a remote line. User-defined serial devices may
include additional printers, addi tional
consoles, communication lines between users in a
multi-user environment, and so on.

This feature isn't available with the adaptable
system BIOS.

You can use SETUP, described in Chapter 5, to
specify the number of user-defined serial
devices that you will have.

3-43

File Management: B(ad Blocks

FILER FUNCTIONS

This section describes filer functions and gives
examples of their use. Functions are listed in
alphabetical order wi th each new function
beginning on a new page.

3-44

File Management: B(ad Blocks

B(ad Blocks

On the menu: B(ad-blks

This function reads a
detect areas that are
physical reason
fingerprints, warping,

volume's data blocks to
apparently bad for some
(magnetic damage,

dirt, and so on).

This function requires you to enter a volume
10. The specified volume must be on-line.

Prompt:

Bad block scan of what vol?

Response:

<volume 10>

Prompt:

Scan for 320 blocks? <yIn>

Enter 'y'
length of
portion of
will then
number of
scan.

for yes to scan for the entire
the disk. To check a smaller
the disk, press 'N'. The system
display a prompt requesting the
blocks which the filer should

3-45

File Management: B(ad Blocks

The system checks each block on the indicated
volume for errors and lists the number of each
bad block. Bad blocks can sometimes be fixed
or marked (see X(amine) •

3-46

File Management: C(hange

C(hange

On the Menu: C(hng

This function changes file or volume names.

C(hange requires two names. The first name
specifies the file or volume name to be
changed, the second entry specifies the name
it is to be changed to. The first entry is
separated from the second entry by ei ther a
<return> or a corrrna (,). Any volume name
information in the second file specification
is ignored since only the name in the volume
directory is changed. Size specifica tion
inforrration is also ignored.

The following example shows how to change file
or volume names. The example file F5. TEXT
resides on the volume occupying device #5:

Prompt:

- C(hange what -fHe?

Response:

#5:F5. TEXT,NEWNAME

3-47

File Management: C(hange

The preceding procedure changes the name in
the directory from ' F5. TEXT' to 'NEWNAME'.
File types are originally detennined by the
file name, however, the C(hange function
doesn't affect the file type. In the above
case, NEWNAME is still a text file.

On the other hand, a response of

#5:F5=,NEWNAME=

preserves the .TEXT suffix.

Wild card specifications are legal in the
C(hange function. If you use a wild card
character in the first file specification,
then you must use a wild card in the second
file specification. The subset-specifying
strings in the first file specification are
replaced by the analogous strings (called
replacement strings) given in the second file
specification.

The filer won't change the file name if the
change would make the new file name too long;
that is, more than 15 characters.

3-48

File Management: C(hange

EXAMPLE:

Given a directory of example disk DISK1:,
containing the following files:

EXAMPLE. TEXT
MAIL.TEXT
MAlt~CODE
MAKE. TEXT

Prompt:

DISK1 :MA=TEXT<,eturn>

Prompt:

Change to what?

XX=WHAT

This causes the filer to report:

DISK1 :MAIL. TEXT --> XXILWHAT
DISK1 :MA.KE:TEXT --> XXKE.WHAT •

The subset-specifying strings may be empty, as
may the replacement strings. The filer
considers the file specification equal sign
(=) (where both subset-specifying strings
are empty) to specify every file on the disk.
Responding to the C(hange prompt with '=,Z=Z'
causes every file name on the disk to have a
, Z' added at the front and back. Responding
to the prompt with 'Z=Z,=' replaces each
terminal and initial 'z' with nothing.

3-49

File Management: C(hange

EXAMPLE:

Given the file names:

THIS. TEXT
THAT.TEXT

Prompt:

Change -what fi le?

Response:

T=T,=

The result would be to change ' THIS. TEXT I to
'HIS.TEX'. and 'THAT.TEXT' to 'HAT.TEX'.

You may also change the volume name by
specifying a volume 10 to be changed and a new
volume 10.

3-50

File Management: C(hange

EXAMPLE:

Prompt:

.. Change ..hat fi le1

Response:

DISK1:,DISK2:

Causes the filer to report:

.DISK1: . --> DISK2:

3-51

File Management: D(ate

D(ate

On the menu: D(ate

This function lists the current p-System date
and enables you to change it if you want.

PrOllpt: Date Set:<1 •• 31>-<JAN•• DEC>-<OO •• 99>
Today is 1-Jan'"83
New date?

You may enter the correct date in the format
given. After pressing <return>, the new date
is displayed. Pressing only a return doesn't
affect the current date. The hyphens are
delimiters for the day, month, and year
fields; allowing you to affect only one or two
of these fields.

For example, you can change only the year by
entering '- -83', only the month by entering
'- Jan', and so on. You can spell out the
name of the month entirely, but the filer will
truncate it.

The mos t corrrnon input is a single number,
which is interpreted as a new day. For
example, if the date shown is the 1st of
January, and today is the 2nd, you enter
'2<return>'; this procedure changes the date
to the 2nd of January. The day-month-year
order is required.

3-52

File Management: D(ate

The p-System I s date is associated wi th any
files which are created or modified during the
current session. Thus, the individual files
rmy have different dates. These dates are
displayed when the directory is listed.

The p-Systern's date
of the system disk.
until you change
function.

is saved in the directory
The date remains the same
it by using the D(ate

NOTE: Some p-Systern application program are
designed to examine and/or change the system
date, ei ther from your input, as with the
filer, or automatically from battery operated
clocks which are available with some machines.

3-53

File Management: E(xtended List

E(xtended List

On the menu: E(xt-dir

This func tion lists the directory in rrore
detail than the L(dir function. (See L(dir
for rrore information.)

All files are listed with their block length,
las t rnodifica tion date, the star ting block
address, the number of bytes in the last block
of the file, and the file type. The unused
areas are also displayed. All wild card
options and prompts are used in the same way
as the L(dir function.

Since this function shows the complete layout
of files and unused space on the disk, it is
useful in conjunction with the M(ake function.
(You can see where files may be created.)

Often, an E(xtended list is too long to fi t on
one screen. In this case, the filer displays
one full screen and then prompts:

You should press <space> to list the rest of
the directory. Press <esc> to abort the
listing.

3-54

File Management: E(xtended List

EXAMPLE:

Here is a sample extended listing:

MYDISK:
FILERDOC2.TEXT 28 1-Jan-83 6 512 Tex·tfile
MEMO. CODE 18 1-Jan-83 34 512 Codefile
<UNt)SED> 10 52· .

SCHEDULE 4 1-Jan-'83 62 . 512 Datafile
HYTYPER.£ODE 12 1-Jan-83 66 512 Codefile
STASIS.TEXT 8· 1-Jan-83 78 512 Tex·t file
LETTER1 • TEXT 18 1-J an-83 86 512 Textfi le
ASSEMDOC. TEXT 20 1-'J an-83 104 512 .Textfi le
FILERDOC1 • TEXT 24 1-'Jan-83 124 512 Textfi le
<UNUSED> 200 148
STASIS.CODE 6 1-'Jan-83 348 512 Codefi·le
<UNUSED> 154 354

·10/10 files <l isted/in-di.r>', 138 blocks used, 356· u~used., 200 in largest·

3-55

File Management: F(lip swap/lock

F(lip Swap/Lock

On the menu: F(lip swap/lock

This function can facilitate the use of the
filer on systems that have enough memory.

The Pascal code that makes up the filer is
divided into several segments. Not all of the
segments are needed in main memory at the same
time. By removing unneccessal~ segments from
memory, more memory space is available for the
filer to perform its tasks. For example, a
transfer is much more efficient when there is
a large buffer area available in memory.
Furthermore, on some machines, there just
isn't enough memory space to contain the
entire filer.

However, allowing the filer to have
nonresident segments requires that the disk
containing SYSTEM. FILER be accessed whenever a
nonresident segment is needed. This can be
inconvenient on two-drive systems. It is more
convenien t to do the following: Enter the
filer, remove the system disk, if desired, and
perform any combina tion of L(is ting,
disk-to-disk T(ransferring, K(runching, and so
on, without having to replace the system disk
at frequent intervals.

3-56

File Management: F(lip swap/lock

In the first mode, the filer segments are
memswapped; and in the second mode, they are
memlocked. The F(lip swap/lock function
allows you to choose the mode the filer will
use. Upon entering the filer, the initial
state is always the memswapped state.
Pressing 'F' ac ts as a toggle between the
memswapped and memlocked states.

For example, if you enter the filer and press
, F I twice, the system displays two messages
similar to these:

Fi rer se-gmen-ts memlocked [9845 wordsJ - "
, Fi ler segments swappab to' [13918 ,-wordsJ- -

The number of available 16-bit words is given
so that you will have an idea of how much
space is left for the filer to perform its
functions. There is usually less space
available in the memlocked mode. If the
machine doesn't have enough space to memlock
the filer segments, you receive a message
indicating so. (If there aren't at least 1500
extra words available, the filer won I tallow
the memlock option.)

3-57

File Management: G(et

G(et

On the menu: G(et

This function designates a text and/or code
file as the work file.

The entire file specification isn't necessary.
If the volume 1D isn't given, the default disk
is assumed. Wild cards aren't allowed, and
the size specification option is ignored.

EXAMPLE:

Given the directory:

f'lEf'lO. TEXT - .
PRINT.CODE

'. PROG. TE-XT • _
.PROG. CODE
line c~unt error, count= 4

Prompt:

Get what file?

Response:

PROG

3-58

File Management: G(et

The filer responds with the following message
because both text and code files exist.

Te~t·& Code f il~ Loaded

If you enter 'PROG.TEXT' or 'PROG.OODE', the
result is the same. Both text and code
versions are loaded. If only one of the
versions exists, as in the case of MEMO, then
that version is loaded, regardless of whether
you requested text or code. For example,
entering 'MEMO.CODE' in response to the prompt
generates the message: 'Text file loaded'.

Using the compiler, edi tor, assembler on a
work file may cause the files SYSTEM.WRK.TEXT
and/or SYSTEM. WRK.OODE to be created as part
of the work file. The SYSTEM.WRK files
disappear when you use the S(ave function. If
you reboot the p-System before using the S(ave
function, the p-System forgets the name of the
work file. In this case, the p-System doesn't
know what files the SYSTEM. WRK files were
derived from.

3-59

File Management: K(runch

K(runch

On the menu: K(rnch

This function moves the files on a volume
together so that the unused space is
consolidated into one large area.

K(runch first displays a prompt asking for the
name of a volume. It then asks if it should
move the files from the end of the volume
toward the beginning. If you answer yes to
this question, K(runch leaves all files at the
front of the volume, and one large unused area
at the end. If you answer no to this prompt,
K(runch asks at which block the file movement
should start. Doing a K(runch from a block in
the middle of the volume leaves a large unused
area in the middle of the volume, with files
clustered toward either end (as space
permits). Doing a K(runch from the beginning
of a volume leaves the files at the end and
the unused space at the beginning.

As each file is moved, its name is displayed
on the console.

If the volume contains a bad block that hasn't
been marked (see B(ad and X(amine), K(runch
may move a valuable fi Ie on top of it. That
file is then beyond recovery. You should scan
for bad blocks wi th the B(ad function before
using the K(runch function unless all files
are also backed up on a different volume.

3-60

File Management: K(runch

If the K(runch function must move
SYSTEM.PASCAL or SYSTEM.FILER on the system
disk, it then displays a prompt which asks you
to reboot the system.

EXAMPLE:

Prompt:

Crunch what vol?

Response:

MVOISK:

If MYDISK: is on-line, K(runch displays a
prompt similar to this:

From end of disk, bloc~ 320 ? "(yIn!

The "320" indicates the last block on your
volume and may be different for your disks.
To start the K(runch, from this location,
press 'Y'. To start the K(runch at another
location, press 'N' and this is displayed:

Enter the block number at which the K(runch
should begin.

The contents of subsidiary volumes can be
K(runched just like any other volume.

3-61

File Management: L(ist Directory

L(ist Directory

On the menu: L(dir

This function lists the files in a disk
directory or some subset of them. Usually,
the listing is displayed on the console, but
you can direct it to a file or to a
communications device, such as PRINTER:.

Each file name is followed by the file length,
in blocks (a block is 512 bytes), and the date
of its last modification.

When you select L(ist directory, this prompt
is displayed:

Dir listing of what vol?

You can respond to this with a storage volume
name. The directory of this volume is then
listed. If you want, you can follow the
volume name with a file name or wild card
expression for multiple file names. In this
case, the single file or the subset of the
directory indicated by the wild card
expression is listed.

You can, if you want, send the listing to a
coornunications volume (such as PRINTER:) or a
file (such as LIST.TEXT). To do this, use a
conrna after you indicate the volume to be
listed. Following the conrna, enter the
destination for the listing.

3-62

File Management: L(ist Directory

If the directory listed is too long to fit on
one screen, the filer lists as much of it as
it can and then displays the following prompt:

. .Type <spa.ce> to· torrti.nue .

Pressing <space> causes the rest of the
directory to be listed; pressing <esc> halts
any further listing.

3-63

File Management: L(ist Directory

EXAMPLE:

To list MYDISK:, select L(ist directory and
respond like this:

Prompt:

, DI~ llstl~g of what vol?

Response:

M,YDISK:

Here is the listing of MYDISK:

Dir l'istin,g of w.hat vol? .
FILER1. TEXT 38 1-Jan-83"
PRINT. CObE 5 1-J an-83
FILE2.TEXT ' 22 1-Jan-83
MEMO.TEX, 30 1-Jan-83
FILE3. TEXT 25 1-Jan-83 , _
5/5 fl,les <llstedlln-dt'r>, 120. blocks used, 100',unused,' 100jn largest,

The bottom line of the display informs you
that: 5 files out of 5 files on the disk have
been listed, 120 blocks have been used, 100
blocks remain unused, and the largest area
available is 100 blocks.

3-64

File Management: L(ist Directory

The following example is a list directory
transaction involving wild cards:

Prompt:

Oir Listing of what vol?

Response:

"'YDISK:FIL=TEXT

The system displays the following listing:

"'YDISK:
FILE1.TEXT 38. 1-Jan-83
FILE2. TEXT 22 1-Jan-83·
FILE3. TEXT 25 1-Jan-83
2/5 files <listed/in-dir>, 85 blocks used, 100 unused, 100 in large$t.

The following example is a list directory
transaction that involves writing the
directory subset to a device other than
OONSOLE.

Prompt:

Dir listing of wh~t vol?

Response:

"'YDISK: FIL=TEXT,PR INTER:

3-65

File Management: L(ist Directory

The system prints the following listing:

I'IYDISK: -
FILE1.TEXT 38 1-Jan-83
FILE2. TEXT 22 1-Jan-83
FILE3. TEXT 25 1-J an-83 -
2/5 files <listed/in-dir>, 85 blocks used, 100 unused, 100 in largest

EXAMPLE:

The following example is a
transaction that involves
directory subset to a file:

Prompt:

Dir listing of what vol?

Response:

I'IYDISK:FIL=TEXT,M5:LIST.TEXT _

list directory
wri ting the

The system creates
disk in drive #5.
listing:

the fi Ie LIST.TEXT on the
LIST. TEXT contains this

I'IYDISK:
FILE1. TEXT 38 1-Jan-83
FILE2~TEXT 22 1-Jan-83
FILE3.TEXT 25 1-Jan-83
2/5 fHes <listed/in-di-r>, -85_blocks used, 100 unused, 100 in largest

3-66

File Management: M(ake

M(ake

On the menu: M(ake

This function crea tes a directory entry wi th
the specified file name.

M(ake requires you to enter a file name. Wild
card characters aren't allowed. The file size
specification option is extremely helpful
because it allows you to determine the size of
the file you are creating. If you omit the
size specification, the filer creates the file
by consuming the largest unused area of the
disk. The file size is determined by
following the file name with the desired
number of blocks, enclosed in square brackets
([]). The file size specification was
described under "File and Volume Names"
earlier.

Text files must be an even number of blocks
with the smallest possible text file four
blocks long (two for the header, and two for
text). M(ake enforces these restrictions; if
you try to M(ake a text file with an odd
number of blocks, M(ake rounds the number
down.

3-67

File Management: M(ake

M(ake can be used
ini tialized data)
the size of a
specification), or

EXAMPLE:

Prompt:

Make what file?

Response:

MYDISK:FILE.TEXT[28J

to create a file (with no
for future use, to extend

file (using the size
to recover a lost file.

The preceding procedure creates
FILE. TEXT on the volume MYDISK:.
to be 28 blocks long to occupy
unused 28-block area on the volume.

the file
It is made
the first

M(ake is used to create .SVOL files which
contain subsidiary volumes. For more
informaton about this, see the section,
"Subsidiary Volumes."

3-68

File Management: N(ew

N(ew

On the menu: N(ew

This function clears the work file.

If you have a work file, the system displays
this prompt:

. Throwaway current work f;L~?

Entering 'y' clears the work file, while 'N'
returns you to the outer level of the filer.

If <work file name>.BACK exists, then the
system displays the following prompt:

Remo've <work fi le name>.BACK '?

Entering 'Y' removes the file in question,
while 'N' leaves the .BACK file alone, but
does create a new work file.

When N(ew is successful, the system displays
this message:

Worlifile cleared

3-69

File Management: O(n/off-line

O(n/off-line

On the menu: O(n/off-line

This function mounts or dismounts subsidiary
volumes.

With the filer menu displayed, press '0'. The
system displays the following menu:

Subsidiary V~Lume: ~{ount, O(ismount, C(Lear

Press 'M'. The system displays the following
prompt:

- Mount what vol ?

To dismount a subsidiary volume, press 'D'.
The system displays the following prompt:

Dismount what voL?

To dismount all the subsidiary volumes, press
'C'. The system irrmediately dismounts all the
subsidiary volumes that are currently mounted.

Suppose that a principal volume,
contains the following files and
prefix is set to P_VOL.

P VOL: '
--:-FlLE1.TEXT

FILE1. CO'OE
- ',VOL1. SVOL,

FILE2.TEXT
FILE2.COOE
OOC1.SVOL

'FUN.SVOL

3-70

P_VOL: ,
that the

File Management: O(n/off-line

To mount subsidiary volumes on P VOL:, you can
respond to the mount prompt with-the file name
of the .SVOL file as in the following
examples.

Mount what voL? VOL1.SVOL<return>
Mount what voL? VOL1.SVOL,FUN.SVOL<return>
Mount what vol? P VOL:=<return>
Mount what vol? #5:=<return>

The first example mounts VOLl:; the second
mounts VOLl: and FUN:; the third moun ts all
three subsidiary volumes on PVOL:; and the
fourth example mounts all subsidiary volumes
on the disk in drive #5:.

To dismount any of these volumes, you can
respond to the dismount prompt with the Volume
ID as in the following examples •

.Dismount what voL? #14:
Dismount" what vol? VOL':<return>
Dismount what voL? VOL1:, 00C1:, F~N:<return>

3-71

File Management: O(n/off-line

The first example dismounts the subsidiary
volume associated with the device number #14.
The second example dismounts VOL1:, and the
third example dismounts three subsidiary
volumes.

NOTE: When mounting a subsidiary volume,
represent it as a file name (VOL1.SVOL). When
dismounting a subsidiary volume, represent it
as a volume name (VOLl:).

For more information about subsidiary volumes,
see the subsidiary volume section earlier in
this chapter.

3-72

File Management: P(refix

P(refix

On the menu: P(refix

This function changes the current default
volume to the volume that you specify.

This func tion requires you to enter a volume
name or device number. The specified volume
need not be on-line.

If you specify a device number (such as #5),
then the new default prefix is the name of the
volume in that device. If no volume is in the
device when prefix is used, the default prefix
remains the device number (such as #5);
thereafter, any volume in the default device
is the default volume.

Since P(refix tells you the volume name of the
new defaul t volume, you may respond to its
prompt wi th a (:) to determine the current
default volume's name. To return the prefix
to the booted or root volume, you may respond
with an asterisk (*).

To use this comnand, select P(refix and the
following prompt will be displayed:

-Prefix titles by w~at valL'

You should enter the desired volume name or
device number.

3-73

File Management: P(refix

CAUTION: When using only a device number for
the prefix, remember tha t any disk in the
device is the default disk. In this
situation, it is very easy to assume that the
system is prefixed to a particular disk,
exchange the disks, and write over a valuable
file or destroy information.

3-74

File Management: Q(uit

Q(uit

On the menu: Q(uit

This func tion terminates the filer and l'eturns
you to the Command menu.

3-75

File Management: R(emove

R(emove

On the menu: R(ern

This function removes file entries from the
directory.

R(emove requires one file specification for
each file you wish to remove. Wild cards are
legal. Size specification information is
ignored.

EXAMPLE:

Given the example files (assuming that they
are on the default volume):

E~AI'IPLE.IExr '
COPViT .COOE," ,
I'IEMO. TEXT, ,
RUNIT. COoe'

Prompt:

. Remov,e" whlillt. fi (e-~ .

Response:

Removes the file RUNIT •CODE from the volume
directory.

3-76

File Management: R(emove

NOTE: To remove SYSTEM. WRK. TEXT and/or
SYSTEM.WRK.CODE, use the N(ew function; not
R(ernove. Using R(ernove may confuse the
system.

Before finalizing any removals, the filer
displays the following prompt:

Prompt:

Update di rectory?

Entering 'Y' causes all specified files to
be removed. 'N' returns you to the outer
level of the filer without removing any
files.

As noted before, wild cards in R(emove
activities are legal.

EXAMPLE:

Prompt:

Remove what file?

Response:

=CODE

Causes the filer to remove RUNIT •CODE and
COPYIT.CODE.

3-77

File Management: R(emove

Pressing the wild card ques tion mark (?)
causes the R(ernove function to display a
prompt questioning the removal of each file
on a volume. This is useful for cleaning
out a directory and for removing a file
that has (inadvertently) been created with
a nonprinting or otherwise invalid
character in its name.

WARNING: Remember that the filer considers
an equal sign (=) by itself to specify
every file on the volume. Pressing an
equal sign alone causes the filer to remove
every file on the directory. (To escape
from this situation. press 'N I in response
to the 'Update directory?' prompt.)

3-78

File Management: S(ave

S(ave

On the menu: S(ave

This function saves the work file under the
file name you specify.

The entire file specification isn't necessary.
If the volume ID isn't given, the default disk
is assumed. Wild cards aren't allowed, and
the size specification option is ignored.

EXAMPLE:

Prompt:

The first prompt appears if your work file
was derived from an existing file. It asks
you if you want to save it under the old
file name. Press 'Y' if you do, and 'N'
otherwise.

The second prompt appears if your work file
was created from scratch, or if you respond
'N' to the first prompt.

3-79

File Management: S(ave

Enter a file name of ten characters or
less. This causes the fi ler to
automatically remove any old file having
the given name and to save the work file
under that name. For example, pressing 'X'
in response to the prompt causes the work
file to be saved on the default disk as
X. TEXT. If a code file has been compiled
since the last update of the work file,
that code file is saved as X.CODE.

The filer automatically appends the
suffixes •TEXT and .CODE to files of the
appropriate type. If you enter AFILE. TEXT
in response to the prompt, the filer saves
the file as AFILE.TEXT. TEXT. The filer
ignores any illegal characters in the file
name, except colon (:). If the file
specification includes a volume ID, the
filer assumes that you wish to save the
work file on another volume.

For example, if in response to the filer
prompt 'Save as what file?', you enter
'VOLl :FILEl " the system then displays the
following message:

IlYDISK:SYSTEIl.WRK. TEXT->VOL1: FILE1. TEXT

3-80

File Management: T(ransfer

T(ransfer

On the Menu: T(rans

This function copies the specified file or
volume to the given destination.

T(ransfer requires you to enter two
specifications: one for the source file or
volume and another for the destination file or
volume, separated by either a comma or
<return>. Wild cards are permitted in file
name specifications only. Size specification
information is recognized for the destination
file. If you include a size specification,
the file is placed in the first unused area on
the disk which is at least as large as the
size specification indicates.

3-81

File Management: T(ransfer

EXAMPLE:

Assume that you wish to transfer the file
IX)ClJ.TEXT from the disk MYDISK to the disk
BACKUP.

Prompt:

Transfer what file?

Response:

I'lYOISK:OOCU.TEXT

Prompt:

,To where?

Response:

BACIWP: NAI'lE. TEXT

NOTE: On a one-drive machine, don't remove
the source disk until the system displays that
prompt asking you to insert the destination
disk.

Prompt:

. . .

Put i~ '8A~I<UP:' pre::,s <space> to' contin'ue

You should remove the source disk, insert the
destination disk, and press <space>.

3-82

File Management: T(ransfer

In any case, when the T(ransfer is complete,
the filer displays this message:

MYOISK: OOCU.TEXT-->BACKUP: NAME. TEXT

You may want to transfer a file without
changing its name. The fi ler enables you to
do this easily by allowing the character
dollar sign ($) to replace the file name in
the destination file specification. In the
above example, had you wished to save the file
I:X:)CU • TEXT on BACKUP under the name DOCU. TEXT ,
you could have done so like this.

MYOISK: OOCU. TEXT ,BACKUP: S

WARNING: Avoid entering the second file
specifica tion with the file name completely
omitted.

For example, if in response to the T(ransfer
function prompt, 'Transfer what file', you
respond with MYDISK: r:xx;U. TEXT, BACKUP: , the
system will display the following prompt.

Oestroy BACKUP: ?

A 'Y' answer causes the directory of BACKUP:
to be destroyed.

3-83

File Management: T(ransfer

NOTE: If the file to be transferred is two
blocks long or less, the system won't display
the warning prompt. The file is transferred
to the area where the bootstrap normally
resides (in front of the disk's directory).

You may transfer files to volumes that aren't
storage volumes, such as CONSOLE: and
PRINTER:, by specifying the appropriate volume
ID (see Appendix A) in the destination file
specification. Don't specify a file name for
a communication device. The system will
ignore it. Make sure the device is on-line
before the transfer.

EXAMPLE:

Prompt:

... _Transfer what file?

Response:

~oCU.r~XT

Prompt:

Response:

.. ~RINT~R:

3-84

File Management: T(ransfer

The preceding procedure causes OOCU.TEXT to be
written to the printer.

You may also transfer from storage devices,
provided they are input devices. The source
file must end with an <eoO (which is a "soft
character" configurable using the SETUP
utility); otherwise, the filer won't know when
to stop transferring. File names accompanying
a communication device are ignored.

Wild cards are recognized in the T(ransfer
function. If the source file specification
contains a wild card character, and the
destination file specifica tion involves a
storage device, then the destination file
specification must also contain a wild card
character.

The subset-specifying strings in the source
file specification are replaced by the
analogous strings in the destination file
specification (replacement strings). Any of
the subset-specifying or replacement strings
may be empty. The filer considers the file
specifications equal sign (=) or question
mark (?) to specify every file on the
volume.

3-85

File Management: T(ransfer

EXAMPLE:

The volume MYDISK contains the files:

PODA"-1, PODB-l, PODC-l

The destination disk is SUCCESS.

Prompt:

Transfer what file?

Response:

P=-1 ,SUCCESS :fiI=2

The system then displays the following
listing:

filYDISK:PODA-1 -~> SUCCESS:MODA-2
filYDISK: POOB-l --> SUCCESS :fiI00B-2
filYDISK:PODC-1 --> SUCCESS:fiI0DC-2

The filer will try to transfer every file on
the disk if you specify the equal sign (=)
as the source file name.

Using the equal sign (=) as the destination
file name specification replaces the
subset-specifying strings in the source
specification with nothing. You may use the
question mark (?) in place of the equal
sign. Using the question mark, you will be
asked to verify each operation before it is
performed.

3-86

File Management: T(ransfer

You may transfer a file from a volume to the
same volume by specifying the same volume ID
for both source and destination file
specifications. This is frequently useful
when you wish to relocate a file on the disk.
Specifying the number of blocks desired causes
the filer to copy the file in the firs t
available area of at least that size. If you
don't specify a size, the file is written in
the largest unused area.

If you specify the same file name for both
source and destination on a same-disk
transfer, the filer rewrites the file to the
size-specified area and removes the older
copy-without changing the file's size.

EXAMPLE:

Prompt:

Response:

#4:QUtZZES. TEXT,#4 :QUIZZES. TEXHZOJ

The preceding procedure causes the filer to
rewrite QUIZZES.TEXT in the first 20-block
area encountered (counting from block 0) and
to remove the previous version of
QUI ZZES. TEXT.

3-87

File Management: T(ransfer

You can also transfer an en tire volume from
one disk to another. The file specifications
for both source and destination should consist
of only volume ID; for example, DISK1:,
DISK2: • Transferring a storage volume to
another storage volume wipes out the
destination volume so that it becomes an exact
copy, including directory, of the source
volume.

NOTE: Some disks have areas which aren't
accessible by the system. The filer can I t
transfer those areas. Bootstraps, in
particular, may have to be transferred with
the utility BOOTER. See the Adaptable System
Installation Manual.

3-88

File Management: T(ransfer

EXAMPLE:

Assume that you want an extra copy of the disk
MYDISK: and transfer to a disk called EXTRA:

Prompt:

Tran'sfer what fi Le?

Response:

. I'IYO'ISK: ,EXTRA:. ,

Prompt:

, ~estroy EXTRA: ,?

WARNING: If you enter 'Y', the directory of
EXTRA: will be destroyed, with EXTRA:
becoming an exact copy of MYDISK:. An 'N'
response returns you to the outer level of the
filer with no transfer taking place.

This volume-to-volume transfer process is a
good backup procedure. Use the C(hange
function to change the name of the backup
disk. The two disks shouldn't have the same
name because this may confuse the system.

3-89

File Management: T(ransfer

Although you can transfer a volume (disk) to
another, using a single disk drive, it is
tedious. This is because the transfer in main
memory reads the information in rather small
chunks, and a great deal of disk juggling is
necessary to complete the transfer.

3-90

File Management: V(olumes

V(olumes

On the menu: V(ols

This function lists volumes currently on-line
with their associated volume (device) numbers.

The following listing is a typical display.

Vols on-l ine:
1 CONSOLE:
2 SYSTERM:
4 # WNCHSTR: [12000]
5 # FLOPPY1: [320]
6 PRINTER:

12 # FLOPPY2: [640]
Root vol is - WNCHSTR:
Prefix is - FLOPPY2:

"Root vol" is the system disk or boot disk.
"Prefix is " indicates the defaul t disk.
Storage volumes are indicated by '#'.

After each disk volume, the number of 512-byte
blocks that it contains is given in square
brackets. This can be useful if the system
uses disks of varying storage capacities. In
the preceding example, the Winchester disk
on-line in drive #4: contains 12000 blocks of
storage capacity, and the floppies on-line in
drives #5: and #12: contain 320 and 640
blocks, respectively.

3-91

File Management: V(olumes

The V(olumes function also displays the
mounted subsidiary volumes. The name of the
principal volume and the name of the starting
block are given for each subsidiary volume
listed.

The following listing is an example.

Vols on-line:
1 CONSOLE:

'2 SYSTERI'l:
4 # WNCHSTR:- [12000]
5 # FLOPPY1: [320]
6 PRINTER:

12 # FLOPPY2: [640]
13 # DOCS: [30001 on vol-ume WNCHSTR: starting at block 400
14 # PROGRI'lS: [3000] on volume WNCHSTR: starting ,at block 3700
15 # FUN: - [3000] on volume WNCHSTR: starting at block 7040

Root vol is - WNCHSTR: ,- ,
Prefix is -'FLOPPY2:

In this example, three subsidiary volumes on
WNCHSTR: are mounted. They use device
numbers #13:, #14:, and #15:. Each of these
volumes contains 3000 blocks.

3-92

File Management: .(hat

W(hat

On the menu: W(hat

This function identifies the name of the
current work file. If the work file hasn't
been saved. the phrase "(not saved" is
displayed after the file name.

EXAMPLE:

Work file ;s D~1:STUFF

3-93

File Management: X(amine

X(amine

On the menu: X(amine

This function attempts to physically recover
suspected bad blocks.

You must specify the name of a volume that is
on-line.

EXAMPLE:

Prompt:

Exa.mine bLocks ,on' what. vol?

Response:

<volume ID>

Prompt:

Block-range ?

Response:

<block-number>
or .

. <block-number> - <block-numb~r>

3-94

File Management: X(amine

If you just enter a block number, only that
block is examined. If you enter two numbers
separated by a hyphen, all of the blocks from
the first one to the second one. inclusive,
are examined. You should have just performed
a bad block scan and should enter the block
number(s) returned by that scan. If any files
are endangered, the following prompt should
appear:

Prompt:

ti Le(s) endangered:
<file name>

Fix them?

Entering 'Y' causes the filer to examine the
blocks and return either of the messages:

BLock <bLock-number> may be ok

In which case the bad block has probably been
fixed, or block <block-number> is bad. If
block <block-number> is bad, the filer offers
you the option of identifying the block(s) as
BAD. Blocks rmrked BAD aren't moved during a
K(runch and are rendered unavailable and
effectively harmless (though they do reduce
the amount of room on the disk).

An 'N I response to the 'fix them?' prompt
returns you to the outer level of the filer.

3-95

File Management: X(amine

WARNING: A block that is fixed may contain
garbage. "May be ok" should be translated as
"is probably physically ok." Fixing a block
means that the block is read, is written back
out to the block and, is read again. If the
two reads are the same, the message is "may be
ok." If the reads are different, the block is
declared bad and may be marked as such if so
desired.

3-96

File Management: Z(ero

Z(ero

On the menu: Z(ero

This function initializes the directory on the
specified volume, rendering the previous
directory irretrievable.

EXAMPLE:

Prompt:

Zero dir of what voL?

Response:

<volume ID>

Prompt:

Destroy <voLume name> ?

A 'Y' response generates •••

Prompt:

Duplicate air?

3-97

File Management: Z(ero

If you enter a 'Y', a duplicate directory is
maintained. This is advisable because if the
disk directory is destroyed, a utility program
called COPYDUPDIR can use the duplicate
directory to restore the disk.

The next prompt appears only if there was a
directory on the disk before the Z(ero
function was used:

Prompt:

Are there 320 blks on the disk? <yIn).

'Y' accepts that number of blocks and skips the next
prompt. 'N' generates •••

Prompt:

of blocks on the disk?

Enter the number of blocks desired.
number varies depending upon
particular disks.

The next prompt is:

New va l name ?

3-98

This
your

File Management: Z(ero

Enter any valid volume name.

Prompt:

<new voLume name> correct?

'Y' accepts the name. 'N' returns to the
prompt requesting a new volume name. If
the filer succeeds in writing the new
directory on the disk, this message is
displayed:

<new volume name> zeroed

3-99

CHAPTER 4

SCREEN-ORIENTED

EDITOR

Screen-Oriented Editor

INTRODUCTION

The editors available with the p-System allow
you to create, alter, and examine text files.
Text files contain human-readable material such
as memos or rnanuscripts.

Three editors are available with the p-System:
the Screen-0riented Editor, the advanced editor
(EDVANCE), and the Line-0riented Editor (YALOE).
This chapter is devoted to the Screen-0riented
Edi tor.

THE EDITOR

Introduction

In order to use the editor, SYSTEM.EDlTOR must
reside on a disk which is on-line. Also, the
SYSTEM.MISCINFD file must be configured for
your particular terminaL If this hasn't
already been done for you, configure it with
the SETUP utility described in Chapter 5.

The Window into the File

The Screen-0riented Editor is specifically
for use with video display terminals (or
cathode ray tubes, CRTs) most of which have
24-line screens. The editor usually uses
the first line of the screen to display its
menu. Therefore, most of the time it
displays 23 lines of text within the file.
Using the edi tor, you may view any part of

4-3

Screen-Qriented Editor: SOE

the file in 23-line segments.

You actually look into the file through a
window that the editor provides. Although
you can access the whole file by using
editor commands, you can view only a portion
of it through the window in the screen.
When an editor command takes you to a
position in the file that isn't presen tly
displayed, the window moves to show you that
new portion of the file.

The Cursor

The cursor is usually a srmll rectangular
box or an underline that appears to be on
(or under) a character. On some terminals,
the cursor may blink continuously. The
cursor is logically located between the
character to its left and the character on
which it rests. You position the cursor to
indicate to the editor its comnands are to
affect the text. For example, the editor
will insert text in front of (that is, to
the left of) the charcter on which the
cursor rests.

4-4

Screen-0riented Editor: SOE

You can move the cursor to any specific
location in a file; at that point, it then
represents your exact posi tion in the file.
The window shows the portion of the file
tha t surrounds the cursor; to see another
portion of the file, move the cursor. The
cursor follows the comnands of the editor.
For example, if you delete portions of the
file, you move the cursor to indica te the
beginning and extent of the deletion.

In this chapter, all text examples are shown
in uppercase, with the cursor denoted by an
underline or a lowercase character.

The Menu

The editor displays a menu at the top of the
screen to remind you of the current corrmand
and the options available for that command.
The most commonly used options appear in the
menu. The following is an example of the
edi tor I S first-level menu, called the E(di t
menu.

>Edit: ACdjust cCopy 'DCel F(tnd ICnsert J(ump·.~·Co[M(argin P(age·?

Notation Conventions

The notation used in this chapter
corresponds to the notation the editor uses
to prompt you. The system uses angle
brackets (< >) to indicate a single key
like the return key «return» or the
space bar (<space>).

4-5

Screen-0riented Editor: SOE

Enter 'FILE NAME<return> , means to enter the
name of the file and then press the return
key. You rmy use ei ther lowercase or
uppercase when entering editor commands.

Editing Environment Options

The editor has two chief modes of operation:
one for entering and modifying programs and
another for entering and modifying English
(or any other language) text. The first
mode includes automatic indentation; the
second includes autormtic text filling. For
more information on these two options, see
the description of the E(nvironment option
of the S(et command.

Command Hierarchy

The Cornnand menu is the first or highest
level of the command hierarchy. To enter
the system editor, press ' E' f rom the
Command menu. If you don't have a text work
file, you are prompted for the name of a
file to edit. You should enter the file
name without the ".TEXT" suffix, followed by
<return>. (If you have a text work file,
that file is autormtically edited.) The
system will display the E(dit menu:

>Edit: A(djust C(opy D(el F(ind I(nsert J<ump K(ol M(argin P(age ?

4-6

Screen-oriented Editor: SOE

The E(di t menu is the second level of the
command hierarchy, as is the F(iler menu and
all the other menus that you can display
from the Command menu.

For example, to select the editor I(nsert
option, press 'I'. The system now displays
the third level of the command hierarchy:

>Insert: Text «bs> a char, aline} [<ext> accepts, <esc>" escapes]

Repeat Factors

The F(ind and R(eplace commands, as well as
most of the cursor-m:>vement keys. allow
repeat factors. A repeat factor allows you
to specify the number of times a coomand
should be performed by the editor. For
example, enter '2R' to select the R(eplace
command. The editor will display this
third-level menu.

>Replac~[2J: L(it V(fy <tar~>~sub>- => .

The number 2 that you entered appears inside
the square brackets to indicate that the
edi tor will perform the specified function
two times.

If you don't specify a repeat factor. the
default (assumed) factor is 1. Use a slash
(/) to specify that a function should be
performed as many times as possible.

4-7

Screen-Qriented Editor: SOE

Direction Indicator

The direc tion indicator determines whether
the cursor will be moved in the forward
direction or in the reverse direction. For
example, if the direction indicator is
forward, the cursor will move to the right
(toward the end of the file) when you press
the space bar. If the direction indicator
is reversed, then the cursor will move left
(toward the beginning of the file) when you
press <space>.

The first character in the menu indicates
the global direction. A right angle bracket
(>) indicates movement to the right, and a
left angle bracket (<) indicates movement
to the left. To change the global
direction, press the left or righ tangle
brackets on the keyboard. When you enter
the editor, the global direction is right.

4-8

Screen-Oriented Editor: SOE

Using the Editor

Moving the Cursor

The special keys described in this section
enable you to move the cursor in a number of
ways. Global direction affects the space
bar, return key, and the tab key. It
doesn't affect the arrow keys and
<backspace>.

Pressing the equal sign (=) moves the
cursor to the beginning of the las t text
that was most recently inserted, found, or
replaced. The equal sign works from
anywhere in the file and isn't affected by
the global direction. An I(nsert, F(ind, or
R(eplace saves the position (within the work
file) of the beginning of the insertion,
find, or replacement.

Pressing the equal sign moves the cursor to
that position and saves the cursor location.
If you perform a C(opy or a D(elete between
the beginning of the file and that absolute
position, the cursor won't jump to the start
of the insertion, because that absolute
position has then been lost.

4-9

Screen-0riented Editor: SOE

The J (ump cOll'lIland rroves the cursor to the
beginning or end of a file, or to a
previously defined marker anywhere within
the file (see the S(et M(arker coomand).
The P(age cOll'lIland rroves the screen window
forward (or backward) by one screen and
positions the cursor to the beginning of the
line. These corrrnands are described in the
section entitled, IIScreen-0riented Editor
Coomands."

The following list SUI1Ill8.rizes the keys which
move the cursor.

Not affected by current global direction:

<down-arrow> Moves the cursor down

<up-arrow> Moves the cursor up

<right-arrow> Moves the cursor right

<left-arrow> Moves the cursor left

<backspace> Moves the cursor left

4-10

Screen-Qriented Editor: SOE

Motion determined by global direction:

<space>

<tab>

<return>

Moves the cursor one space
in the global direction

Moves the cursor to the
next tab stop

Moves the cursor to the
beginning of the next line

These keys change the global direction to
backward:

Left angle bracket
Cooma
Minus Sign

(<)
(,)
(-)

These keys change the global direction to
forward:

Right angle bracket
Period
Plus Sign

(>)
(.)
(+)

You can use repeat factors with any of the
cursor movement keys listed above.

To move the cursor on terminals which don't
have arrow keys, use the SETUP utility to
designate a set of control keys to act as
cursor keys. To configure the system for
use with a particular terminal, refer to
Chapter 5.

4-11

Screen-0riented Editor: SOE

You can't move the cursor outside the text
of the program. For example, after the 'N'
in 'BEGIN' in Figure 4-1, press the
<right-arrow>; this moves the cursor to the
'W' in 'WRITE'. Similarly, at the first 'W'
in "WRITE(I TOO WISE ') ; " , use the
<left-arrow> to back up after the 'N' in
I BEGIN' •

:BEGIN _ -
-WR-ITE(' TOO WiSE-');

BEGIN_- --
- ~ITE('TOO WI~E~O);.

Figure 4-1. Cursor Example

In Figure 4-2, if you must change the
'WRITE(I TCX) WISE ');' found in the third
line to a I WRITE(I TCX) SMART ');', you must
first move the cursor to the correct
posi tion.

4-12

Screen-Qriented Editor: SOE

For example, if the cursor is at the 'P' in
I PRffiRAM STRING1; " go down two lines by
pressing the <down-arrow> twice. To mark
the positions the cursor occupies, labels a,
b, and c are used in Figure 4-2. The' a '
marks the initial position of the cursor;
the 'b' marks the cursor position after the
first <down-arrow>; and the 'c', marks the
cursor after the second <down-arrow>.

aROGRAM STR ING1"
bEGIN
cWRITE('TOO WISE ');

Figure 4-2. Cursor Positions

Now, using the <right-arrow>, move the
cursor until it sits on the 'W' of 'WISE'.
Note that with the use of the <down-arrow>,
the cursor appears to be outside the text
(c). However, when the cursor is displayed
outside the text, it is actually on the
closest character to the right or left. In
this case, the editor considers the cursor
to be at the 'W' in 'WRITE'; when you press
the first <left-arrow>, the cursor jumps to
the 'R' in 'WRITE'.

F(ind and R(eplace

Both F(ind and R(eplace operate on delimited
strings. The editor has two string storage
variables. One, called <targ> by the menus,
is the target string and is used by both
corrmands; while the other, called <sub> by
the R(eplace menu, is the substitute string
and is used only by R(eplace.

4-13

Screen-Qriented Editor: SOE

Enter these strings when using F(ind or
R(eplace. Once entered, they are saved by
the editor and may be reused.

When you enter a string, you must use a
special character to delimit (mark) the
beginning and end of the string. For
example, Ifun/, $work$, and "gismet"
represent the strings fun, work, and gismet,
respectively. The editor allows any
character that isn't a letter or a number to
be used as a delimiter.

F(ind and R(eplace operate in either of two
search modes: 1i teral and token. These
modes are stored by the S(et E(nvironment
corrrnand and can be changed by it, or they
may be temporarily overridden using the
F(ind or R(eplace corrrnands.

In the literal mode, the editor looks for
any occurrences of the target string. In
the token mode, the editor looks for
isolated occurrences of the target string.
The editor considers a string isolated if it
is surrounded by spaces or other
punctuation. For example, in the sentence
"Put the book in the bookcase.," using the
target string "book," the literal mode finds
two occurrences of "book," while the token
mode finds only one-the word "book"
isolated by spaces.

In addition, the token mode ignores spaces
wi thin strings, so that <space> comma
<space> (",") and comma (", ") are
considered the same string.

4-14

Screen-0riented Editor: SOE

When using either F(ind or R(eplace, you may
use the strings previously entered by
pressing'S' • For example, entering
'RS/<any-string>/' causes the R(eplace
cornnand to search for an occurrence of the
previous target string and replace it wi th
<any string>. Entering 'R/<any-string>/S'
causes the next occurrence of <any string>
to be replaced with the previous substitute
string.

To find out the current contents of the
<targ > and <sub> strings, use the S(et
E(nvironment command.

Work Files

When you enter the editor, the system reads
and displays the work fiLe. If you haven't
already created a work file, the editor will
display the following prompt:

. >Edit: No ~ork file is present.
Fi le? (. <ret> for no fi le)

There are three ways to respond to this
prompt:

4-15

Screen-0riented Editor: SOE

1. With a name, for example 'STRING1' <ret>.
The file named STRING1.TEXT is now
retrieved. The file STRING1 could
contain a program, also called STRING1,
as in Figure 4-3. After entering the
name, the text of the first part of the
file appears on the screen.

PROGRAM' STR ING1;
BEGIN

WRITE('TOO WISE');
WRITE('YOU ARE');
WRITELN(',') ;
WRITELN('TOO WISE');
WRITELN('YOU BE')

END.

Figure 4-3. Program Stringl

2. With a <return>. This response indicates
that you wish to start a new file. The
only thing visible on the screen after
this response is the E(dit menu. Press
'I' to begin inserting a program or text.

3. With <escape>. This response stops the
editor, causing the system to return to
the Command menu.

Using Insert

To use the I(nsert command, press 'I' from
the E(dit menu. Place the cursor on top of
the letter before which you want to make an
insertion. The cursor must be in the
correct posi tion before pressing 'I I • From
the point of insertion, the rest of the line
is moved toward the right side of the
screen. If the insertion is long, that part

4-16

Screen-Qriented Editor: SOE

of the line is moved down to allow room on
the screen.

After pressing 'I', the system displays the
following prompt:

, >Insert: text «bs> a char, a line) C<etx> accepts, <esc> escapesJ

The cursor is
Figure 4-3).
appears on the
Figure 4-4).

at the 'w' in 'WISE' (see
Enter ' SMART' • The word

screen as it is entered (see

The choice at the end of the prompt
indicates that pushing the <etx> key accepts
the insertion; while pushing the <esc> key
rejects the insertion, leaving the text as
it was before pressing I I ' • Press <etx>
(see Figure 4-5).

BEGIN WRITE('TOO S"ART__ WISE ');

Figure 4-4. Screen after entering 'SMART'

. BEGIN WR.ITE (' TOO S"ARTWISE ');

Figure 4-5. Screen after <etx>

4-17

Screen-Oriented Editor: SOE

While in l(nsert, you can insert a carriage
return by pressing <return>. The editor
then star ts a new line. Notice that a
carriage return starts a new line wi th the
same indentation as the previous one. This
is often convenient when entering program
text. (See the section on Auto-Indent
mode.)

Using Delete

D(elete works like I(nsert. Move the cursor
to the ' W' IN WI SE (see Figure 4-5) and
press 'D' to select the D(elete command.
The system then displays the following
prompt:

>Delete: < > '<MoviP9 commands> {<etx> to delete, <esc> to.abort}

Each time you press <space>, a letter
disappears from the screen. Press <space>
four times. Pressing <backspace> causes a
character to reappear. Pressing <etx>
causes the deleted text to be removed
permanently, or pressing <esc> causes it to
reappear and remain unaffected.

To delete a carriage return at the end of a
line, press 'D' and then press <space> until
the cursor moves to the beginning of the
next line.

4-18

Screen-0riented Editor: SOE

Leaving the Editor

When all text changes and additions have
been made. press 'Q' to leave the edi tor.
The system then displays the following menu.

>Quit:
U(pdate the work file and leave
E(xit without updating
R(eturn to the editor without updating
W(rite to a file name and return

Using the U(pdate option saves a copy of the
file on disk as SYSTEM.WRK.TEXT. This file
is your work file.

The W(rite option saves
whatever name you wish.
necessarily your work file.

the file
The file

under
isn't

R(eturn simply returns you to the editor
without saving anything to disk.

E(xit leaves the editor without saving
anything. Any changes or additions to the
file are discarded and lost permanently.

4-19

Screen-Oriented Editor: SOE / A(djust

Screen-oriented Editor Commands

The Screen-Qriented Editor activities are
covered in alphabetical order in this section.

A(djust

On the menu: A(djust

Repeat factors are allowed in conjunction
with the arrow keys within A(djust.

Press 'A' from the E(dit menu. This
displays the following menu:

" . ?AdJust: Ujust'R(just C(enter <arrow keys> {<etx>. to Le'ave}

The A(djust command moves a line to the left
or to the right. The <right-arrow> and
<left-arrow> move the line on which the
cursor is located. Each time you press a
<right-arrow>, the whole line moves one
space to the right. The <left-arrow> moves
the line one space to the left.

To adjust more than one line, use the
<up-arrow> or <down-arrow>; the line above
or below the previously adjusted line is
autormtically adjusted by the same amount.

4-20

Screen-Qriented Editor: SOB I A(djust

The character 'L' justifies the line to the
left rrargin, I R' justifies it to the right
margin, and 'e' centers the line between the
margins. Use the <up-arrow> and the
<down-arrow> to duplicate the adjustment on
preceding (succeeding) lines.

Use the S(et E(nvironment command to alter
the rrargins.

The sys tern repositions the cursor to the
beginning of the last line adjusted. Press
<etx> to exit the A(djust corrrnand; <esc>
won't work here.

4-21

Screen-Oriented Editor: SOE / C(opy

C(opy

On the menu: C(opy

Repeat factors are not allowed.

Press 'c' from the E(dit menu. The
following menu is displayed.

>C(opy: 8(uffer F(rom file <esc>

The C(opy corrma.nd allows text to be copied
into the current text from one of two
sources: a temporary buffer called the
"copy buffer," or a text file on disk. To
copy from the copy buffer, press 'B'. The
editor irrrnediately copies the conten ts of
the buffer into the file, starting at the
location of the cursor when you pressed 'C'.
The buffer may be recopied until you change
the contents of the buffer.

When the C(opy function ends, the cursor is
placed at the end of the copied text.

The following corrmmds affect the copy
buffer.

1. D(elete: When you press <etx> , the
buffer is loaded with the deletion. When
you press <esc>, the buffer is loaded
with what would have been deleted.

4-22

Screen-Driented Editor: SOE / C(opy

2. I (nsert : When you press <etx> , the
buffer is loaded with the insertion.
When you press <esc>, the copy buffer is
emptied.

3. Z(ap: If you use the Z(ap coomand, the
buffer is loaded with the deletion.

4. M(argin : This cornnand causes the copy
buffer to be left empty.

Generally, if the text that you want to copy
already exists, you should D(elete it, and
press <esc>. Then you can use C(opy B(uffer
to place tha t tex t anywhere you like. The
original text remains unaffected.

To copy text from another file, press 'F I •

The system then displays the following menu.

·>C(opy: F~om:what file(marker,markerJ?

Any file may be specified; .TEXT is assumed.
The markers are optional and are used for
copying part of a file.

4-23

Screen-Oriented Editor: SOE / C(opy

To copy part of a file, you must have
previously S(et markers, at the beginning
and end of the text you wish to copy. You
may use two markers, or the file's beginning
or end as a marker. For example, if you
specify [,marker] or [marker,], the file
is copied from the start of the file to the
marker or from the marker to the end of the
file.

4-24

Screen-Griented Editor: SOE / D(elete

D(elete

On the menu: D(el

Repeat factors aren't allowed.

To select the D(elete comnand, press 'D'
from the E(di t menu. The following prompt
is displayed:

, >,Delete: _< > '<"'~v;n9 commands> '{<etx> to d'elete, ,<esc> to abort>:

You must have first placed the cursor where
you want to begin deleting text. The
D(elete corrrnand uses an "anchor" at this
initial position. As you move the cursor
away from the anchor, characters disappear.
Moving back toward the anchor restores those
characters to the text file. To accept the
deletion, press <etx>; to escape, press
<esc>.

Wi thin the D(elete command, all
cursor-moving actions are valid, including
repeat factors and global direction.

Whenever a deletion is larger than the
available copy buffer space, the editor will
display the following warning.

',Th.ere is no room to ,copy the del'etio~.: 00 'yo~'~ish to delete·imy~a"Y?·. . ~ . . - . -

4-25

Screen-GTiented Editor: SOE / D(elete

A 'Y' or 'y' is a yes answer; any other
character escapes the D(elete command.

The following procedure shows how to use the
D(elete command (see Figure 4-6).

1. Move the cursor to the 'E' in END.

2. Press '< I (this changes the direction to
backward) •

3. Press 'D'.

4. Press <return> <return> • After pressing
<return> once, the cursor moves to the
position in front of the 'WI in WRITELN,
and "WRITELN('TO BE. ');" disappears.
After the second return, the cursor
appears before the 'WI in WRITE with that
line gone.

5. Now press <etx>. After deletion, the
program appears as shown in Figure 4-7.

4-26

Screen-0riented Editor: SOE I D(elete

The two deleted lines have been stored in
the copy buffer, and the cursor has returned
to the anchor posi tion. I f you wish, you
rmy now use C(opy to copy the two deleted
lines to any other place in the file.

PROGRAM STRING2;
BEGIN

WRITE('TOO WISE ');
WRITELN(' TO BE.')

END.

Figure 4-6. D(elete Example A

PROGRAM STRING2:
BEGIN
END.

Figure 4-7. D(elete Example B

4-27

Screen-oriented Editor: SOE / F(ind

F(ind

On the menu: F(ind

Repeat factors are allowed.

To use the F(ind command, press 'F' from the
E(dit menu. The system will display one of
the following prompts (depending upon how
T(oken definition is set in S(et
E(nvironment) :

>Find[nJ: L<it <target> =>
>Find[nJ: T<ok <target> =>

(Where 'n' is the repeat factor given before
pressing 'F'; this number is 1 if you gave
no repeat factor.)

The F(ind corrrnand locates the nth occurrence
of the <target> string, starting from the
cursor position and moving in the global
direction (shown by the arrow at the
beginning of the menu). The cursor stops at
the position immediately after this
occurrence.

To search in the token or the literal mode,
press the appropriate character (either 'L'
or 'T', respectively), before entering the
target string.

4-28

Screen-0riented Editor: SOE / F(ind

If the string doesn't occur within the text
file between the cursor and the end or
beginning of the file (depending on global
direction) , the system displays the
following message.

ERROR: Pattern not in the fiLe. Please press <spacebar> to continue.

The following paragraphs show how to use the
F(ind cornnand.

In the STRIl'l}l program (see Figure 4-8),
with the cursor at the first 'P' in 'PRffiRAM
STRING1', press 'F'. When the prompt
appears, enter 'WRITE'. Single quote marks
must be entered. The prompt with your
response is shown in the following listing.

>Find(1): L(it <target> =>'WRITE'

Immediately, the cursor jumps to the
character following the 'E' in the first
'WRITE' •

In the STRINGl program with the cursor on
the 'E' in 'END.', enter '(3F' (don't
include single quotes). This entry finds
the third occurrence of the pattern in the
reverse direction. When the menu appears,
enter ' /WRITELN/ t • The menu with your
response is shown in the following listing.

<Find(3): L< it <target> =>/WRITELNI

4-29

Screen-Griented Editor: SOE / F(ind

The cursor will move to a position
immediately after the 'N' in WRITELN.

On the first find, enter 'F/WRITE/'. This
locates the first 'WRITE'. Now enter 'FS'.
The cursor appears after the second WRITE •

. PROGRA"nTRING1;-
BEGIN . .

WRITE('TOO WISE '); _
WRITE('YOU ARE'·);
WRITELN(, '). .
WRITE1.·N(;TOO'WISE 'J;
WRITELN('YOU BE.')

END•.

Figure 4-8. F(ind Example

4-30

Screen-oriented Editor: SOE / I(nsert

Insert

On the menu: I(nsert

Repeat factors aren't allowed.

To select the I (nsert conrnand, press ' I '
from the E(dit menu. The system then
displays the following menu.

>Insert: Text {<bs> a char, a Line} [<etx> accepts, <esc> escapes]

Characters are entered into the text file as
they are pressed, starting from the position
of the cursor. This includes the character
<return>. Nonprinting characters are echoed
with the nonprinting character symbol
(usually a '?'; this can be changed by using
Sgl~). To make corrections while still in
I(nsert, use <backspace> «bs» to remove
one character at a time or <rubout> «del»
to remove an entire line. Backspacing past
the beginning of the insertion causes the
system to display an error message.

Create the text file with the I (nsert
cornnand, using the modes selected with the
S(et E(nvironment conrnands. Use S(et
E(nvironment for selecting the auto-indent
and the filling modes.

4-31

Screen-0riented Editor: SOE / I(nsert

Using Auto-Indent

If auto-indent is true, a <return> causes
the cursor to start the next line with an
indentation equal to the indentation of
the line above it. If auto-indent is
false, a <return> returns the cursor to
the first position of the next line.

Using Filling

If filling is true, the editor forces all
insertions to be between the righ t and
left margins. It does this by
automatically inserting returns between
words whenever the right margin would have
been exceeded and by indenting to the left
margin whenever a new line is started.
The editor considers anything to be a word
that is between two spaces or between a
space and a hyphen.

Pressing two returns in succession creates
a new paragraph. In other words, a
paragraph is a block of text delimited by
blank lines (or command lines (see S(et),
or the beginning or end of the text file).
The first line of a paragraph may be
indented differently than the remaining
text (see S(et E(nvironment).

4-32

Screen-0riented Editor: SOE / I(nsert

If both auto-indent and filling are true,
auto-indent controls the left-margin,
while filling controls the right-margin.
You may change the level of indentation by
using the <space> and <backspace> keys
immediately after a <return>.

Example 1: With auto-indent true, the
following sequence creates the indentation
shown in Figure 4-9.

'ONE'<return>
<space><space> 'TWO' <return> I

THREE '<return>
<backspace> I FOUR'
ONE original indentation

TWO indentation changed by <space><space>
THREE <return> causes auto-indentation to level of line above

FOUR <backspace> changes indentation from LeveL of Line above

Figure 4-9. Indentation Example

Example 2: With filling true (and
auto-indent false) the following sequence
creates the inden ta tion shown in Figure
4-10.

'ONCE UPON A TIME THERE- WERE'.
ONCE UPON A Auto-returned when next word wouLd exceed margin
TIME THERE- Auto-returned at hyphen
WERE

LeveL of Left margin
line count error, count= 8

Figure 4-10. Auto-Indent Example

4-33

Screen-oriented Editor: SOE / I(nsert

You can force the cursor to the left
margin of the screen by entering
<control-Q> (ASCII Del). On some machines
or terminals, CTRL-Q is the prefix
character which requires you to press it
twice to achieve the desired effect.

Filling also causes the editor to adjust
the margins on the portion of the
paragraph following the insertion. This
adjustment doesn't affect any line
beginning with the command character (see
S(et), and such a line terminates a
paragraph.

You may readjust a filled paragraph by
using the M(argin command but only if
F(illing is TRUE and Auto-indent is FALSE.
This may be very useful if you wish to
change the margins of a document (which
may be done with S(et E(nvironment).

The global direction doesn't affect
I(nsert, but is indicated by the direction
of the arrow on the menu.

If an insertion is made and accepted, that
insertion is available for use in C(opy.
However, if <esc> is used, there is no
string available for C(opy.

4-34

Screen-Oriented Editor: SOE / J(ump

J(ump

On the menu: J (urnp

Repeat factors aren't allowed.

Upon entering J(urnp, the following menu
appears:

>JUMP.: BCeginning ECnd M(arker <esc>.

Pressing ,BI (or I E') moves the cursor to
the beginning (or the end) of the file.
Pressing 'M' displays the following prompt:

Jump ~~ ~hat ~~rker7

Markers are user-defined names for positions
in the text file. See the M(arkers corrmand
of the S(et corrmand for more information.

4-35

Screen-Oriented Editor: SOE / K(olumn

K(olumn

On the menu: K(01

Repeat factors aren't allowed.

K(olumn displays the following menu:

>K<oLumn: <vector keys> «etx>, <esc> CURRENT Line}

You may move all of a line which lies to the
right of the cursor to the left by using the
<left-arrow> or to the right by using the
<right-arrow>. Using the <up-arrow> or
<down-arrow> applies the same column
adjustment to the line above or below.
Press <etx> to leave K(olumn. You can use
<esc>, but it only rejects the changes made
most recently to the current line.

NOTE: When using K(olumn, each <left-arrow>
deletes one character at the cursor. It's
easy to do this and any characters deleted
aren't saved in the copy buffer as in
D(elete, so be careful when using K(olumn.

4-36

Screen-Oriented Editor: SOE / M(argin

M(argin

On the menu: M(argin

Repeat factors aren't allowed.

M(argin realigns the paragraph (where the
cursor is located) to fit within the current
margins. All of the lines within the
paragraph are justified to the left margin,
except the first line, which is justified to
the paragraph margin. You can set all these
global margins with the S(et E(nvirorunent
cOfJJlland.

The cursor may be located anywhere within
the paragraph when you press 'M'.

Figures 4-11 and 4-12 show margins settings
and an example of a paragraph that uses
those settings.

Left-margin, 0
Right-margin, 40
Paragraph-margin, 8

This quarter, the equipment is
different, the course materials are
substantially different, and the course
organization is different from previous

"Quarters. You will be misled if you
depend upon a friend who took the course
previousLy to orient you to the course.

Figure 4-11. M(argin Example A

4-37

Screen-Oriented Editor: SOE / M(argin

Left-margin, 8
Right-rmrgin, 40
Paragraph-margin, 0

. This quarter', the e-qu.;pment. ;·s .
.d.lfferent, the course materials·
a-re .substanti.ally.different, and
the' course organi~ation is
dif.ferent-from.p.revious quarters ..
You will be nifsled ..if you· depend

. upon a" friend who tppk the ·course .
previously to orient -you to. the.
course~ ..

Figure 4-12. M(argin Example B

A paragraph is any block of text delimited
by blank lines, lines beginning with a
command character or the beginning or end of
the text file. If the text file or the
paragraph is especially long, the system may
remain blank for several seconds while
M(argin completes its work. When M(argin
finishes, the system redisplays the
paragraph. M(argin never splits a word; it
breaks lines at spaces or at hyphens.

4-38

Screen-oriented Editor: SOE / M(argin

Command Characters

M(argin won't affect a line if the line
s tarts wi th a corrrnand character. The
command character must be the first
nonblank character in the line. M(argin
treats lines beginning with the corrrnand
character as blank lines. The coornand
character itself is any character so
designated using the S(et E(nvironment
corrrnand.

4-39

Screen-0riented Editor: SOE / P(age

P(age

On the menu: P(age

Repeat factors are allowed.

Moves the cursor one screen in the global
direction. If a repeat factor is used,
several screens are traversed. The cursor
remains on the same line on the screen, but
is moved to the start of the line.

4-40

Screen-Oriented Editor: SOE / Q(uit

Q(uit

On the menu: Q(uit

Repeat factors aren't allowed.

Q(uit displays the following menu:

>Quit:
U(pdate the work fHe and leave
E(xit without updating
R(eturn to the editor without updating
W(rite to a file name and return

Select one of the four options by pressing
'U', 'E', 'R', or 'W'. All other characters
are ignored.

U(pdate:

Stores the file just modified as
SYSTEM. WRK. TEXT; then leaves the editor.
SYSTEM. WRK. TEXT is the text portion of the
work file.

E(xit:

This leaves the editor irrmediately. Any
modifications made since entering the
editor aren't recorded on disk. All
edi ting during the session is
irrecoverably lost, unless you have
already used the W(rite corrmand of Q(uit
to save the work.

4-41

Screen-oriented Editor: SOE / Q(uit

R(eturn:

Returns to the edi tor wi thout updating.
The cursor is returned to the exact place
in the file it occupied when I QI was
pressed. This command is frequently used
after unintentionally pressing 'Q'. It is
also useful when you wish to make a backup
to your file in the middle of a session
with the editor.

W(rite:

This command puts up a further menu:

. >Quit:· . .' .

. ··Name of _output f i-l e «c r> to return) '-->

The file may now be given any proper name.
If it is written to the name of an
existing file, the new copy replaces the
old file. Use 1$' to write to the same
name that the file had when you entered
the editor. Alternatively, you can abort,
Q(uit, at this point by pressing <return>
instead of entering a file name; you will
return to the editor. If the HIe is
wri tten to disk, the editor displays the
following:

>Quit
Writing.•.•••• _ ~

Your fHe is 1978 bytes long.
Do',you want 'to E'(xit from or R(et,:,rn to ,the 'edi.tor? .

4-42

Screen-Oriented Editor: SOE I R(eplace

R(eplace

On the menu: R(plc

Repeat factors are allowed.

Upon entering R(eplace, one of the two menus
in the following example appears, depending
on the global mode. In this example, a
repeat factor of four is assumed.

" ">R"plac"i"l:Ui"t V(fy <targ><sub> "=>"
">R"place[4l.:T(ok V(f"y <t"arg><sub> =>

R(eplace finds the target string «targ»
exactly as F(ind would, and replaces it with
the substitution string «sub».

The V(erify cOJTlJland (' V(fy ') allows you to
examine each <targ> string found in the text
so you can decide if it is to be replaced.
To use this command, press 'V' before
pressing the target string.

The following menu appears whenever R(eplace
has found the <targ> pattern in the file and
verification has been requested:

.......

4-43

Screen-Qriented Editor: SOE / R(eplace

Pressing 'R' at this point causes the
replacement to take place, and the next
target to be sought. Pressing <space>
causes the next occurrence of the target to
be sought. At any point, an <esc> aborts
the R(eplace.

Wi th V(erify, this process continues until
the repeat factor is exhausted or until the
target string can no longer be found.

With R(eplace, if the target string can't be
found, the following menu appears.

ERROR: Pattern not in the file. Please press <spacebar> to continue.

R(eplace places the cursor after the last
string that was replaced.

Example 1:

Enter 'RL/Low//High/' like this:

>Replace[1J: Uit Vlfy <targ> <sub> =>L1LowI/Highl

This command will change:

"Lowly" to "Highly"

Literal is necessary because the string
'Low' isn't a token, but part of the token
'Lowly' •

4-44

Screen-GTiented Editor: SOE / R(eplace

Example 2:

In the Token mode, R(eplace ignores spaces
between tokens when finding patterns to
replace. This example concerns the
following two lines.

WRITE(' ,.);
WR ITE (',');

Enter '2R' from the E(dit menu. The system
then displays the following menu:

>ReplaceC2J: L(it V(fy <targ> <sub>

Enter /(', ')/.LN. Immediately after
entering the last period, the following two
lines replace the previously listed lines:

WRITELN;
WRITELN;

4-45

Screen-Qriented Editor: SOE / S(et

S(et

On the menu: S(et

Repeat factors aren't allowed.

Upon entering S(et,
appears:

the following menu

. '. '. ," .

. ·>S.~t: M~~rker' E(nv.ir.-onm~nt· <e·s~>·_.

S(et E(nvironment

You can set the editing environment to a
mode that is most convenient for word
processing or more structured kinds of
editing (such as programning text or
special tables). When in S(et, press 'E'
for E(nvironment; the following display
then appears:

. >Envi ron:ment: '. {options)" <'spa~~bar> 'to ·.~ea\i.e.·
A'Cuto', indent True'

o'FCi'lltng '.' False
. LCeft margin 9 ' .

RCight margi·n 70
'.. PCara.·margin.·.. 9

0" .C Comntand ch ,0 0"

o··SCet tabstops
.no'.n "def Tru'e

. 3152 b.ytes used', .296:1'2 avai labl"e•..
.Editjng: :,SCHEDULE. TEXT' " '.' . ..,. ,

, Created"MarchoW', W82; 'last ,updated March ?-4,'1y82 {revi'sion 10>
. Ed' tor VersJon c.ril.t f4J·...' .

4-46

Screen-Oriented Editor: SOE / S(et

The line that begins 'Editing:'
identifies the file currently being
edited. If the file has just been created
but not named, the line reads:

Editing,: u':lnamed

By pressing the appropriate letter, you
may change any or all of the options.

E(nvironment Options

A(uto indent:

Auto-indent affects only insertions.
Refer to the section on I(nsert.
Auto-indent is set to true (turned on) by
entering 'AT' and to false (turned off) by
entering 'AF'.

F(illing:

Filling affects I(nsert and M(argin.
(Refer to those sections.) Filling is set
to true (turned on) by entering , IT' and
to false by entering 'FF'.

4-47

Screen-Driented Editor: SOE / S(et

L(eft margin, R(ight margin, P(ara margin:

When Filling is true, the margins set in
E(nvironment are the margins that affect
I(nsert and M(argin. They also affect the
Center and justifying commands in A(djust.
To set a margin, press 'L', 'R', or 'P',
followed by a positive integer and a
<space>. The positive integer entered
replaces the previous value. Margin
values must be four digits or less.

C(ommand ch:

The command character (C(ommand ch:)
affects the M(argin command and the
Filling option in I(nsert. (Refer to
those sections.) Change the command
character by pressing 'C', followed by any
character. For example, entering 'C* '
changes the corrrnand character to '*'
This change is reflected in the menu. The
command character was principally designed
as a convenience for using text formatting
programs whose commands are indicated by a
special character at the beginning of a
line.

4-48

Screen-oriented Editor: SOE / S(et

S(et Tabstops:

The editor allows you to set tab stops.
From the E(dit corrmand menu, press S(et,
E(nvironment, and then press S(et
tabstops. The system will display the
following interface menu.

Set tabs: <right, left vectors> C(ol# T(oggle tab <etx>
T----T----T----T----T----T----T----T----T----T----T----T----T----
Column#1

The cursor will start at position one in
the line of Ts and dashes (-). The line
'Column#l' indicates the positon of the
cursor. To set or remove a tab, move the
cursor to the desired location, using the
right or left vector keys; or press 'C'
and enter the desired column number.
Press 'T' to insert a tab or delete a tab.

Pressing 'T' changes the indicator from a
dash to T; pressing 'T' again in the same
column changes the ' T I back to a dash.
The system displays the current column
number of the current cursor position and
updates it each time you press a
right/left vector key or 'C(olumn'
cornnand.

4-49

Screen-Qriented Editor: SOE I S(et

T(oken def:

This option affects F(ind and R(eplace.
Set Token to true by entering 'TT' and to
false by entering 'TF'. If Token is true,
Token is the default; and if Token is
false, Literal is the default.

S(et M(arker

When edi ting, it is particularly
convenient to be able to jump directly to
certain places in a long file by using
markers set in the desired places. Once a
marker is set, you can jump to it by using
the M(arker command in J(ump.

Move the
position,
M(arker.

cursor to the desired marker
enter S(et, and press 'M' for

The following prompt appears:

Set what marker?

You may give markers names of up to eight
characters followed by a <return>. The
marker is entered at the position of the
cursor in the text. If you use the name
of a marker tha t already exis ts , it wi11
be repositioned.

4-50

Screen-Oriented Editor: SOE I S(et

Twenty markers are allowed in a file at
anyone time. You will receive the
following display if you try to se t more
than 20 markers:

Mark,er' ovflw. 'Wh';ch one.to replace? .(Type. i.n t.he let,ter or <s'p» "
a), name' 'b)' name2 C). name3 " d) name4
e) MmeS f) namet> gl name?, h) name8'

,'il ',n.ame9 j) name"O k) namel' Ll" name' 2
m) nameB, n) name14 '. 0). naale'S, p)' nam~j6
,q) namel? r) name'18 sj ,name19 ... tl ~ame20

Choose a letter "a" through
space will now be available
setting the desired marker.

4-51

"t"; that
for use in

Screen-Oriented Editor: SOE / V(erify

V(erify

On the menu: V(erify

Repeat factors aren't allowed.

The current window is redisplayed, and the
cursor is repositioned at the center line of
text on the screen.

4-52

Screen-Oriented Editor: SOE / X(change

X(change

On the menu: X(change

Repeat factors aren't allowed.

Upon entering X(change, the following menu
appears:

>eXchange: TEXT «bs> a char} [<esc> escapes; <ext> accepts)

Starting from the
replaces characters
characters you enter.

position,
in the

X(change
file with

For example, in the file in Figure 4-13,
with the cursor at the 'w' in WISE, entering
'XSM' replaces the 'w' with the'S' and then
the 'I' with the 'M'. This leaves the line,
as shown in Figure 4-14, with the cursor
before the second'S'.

WRITE('TOO ~ISE ');

Figure 4-13. X(change Example A

WRITE (' TOO SM~E ');

Figure 4-14. X(change Example E

4-53

Screen-Oriented Editor: SOE / X(cbange

The <etx> key accepts the actions of the
eX(change, while the <esc> key leaves the
command with no changes recorded in only the
last line altered.

The X(change command ignores the global
direction; exchanges are always forward.

You may use the arrow keys, <backspace>,
<return>, and <tab> to move the cursor about
the screen. X(changes move forward from
wherever the cursor is moved to~

While in X(change, the terminal's KEY TO
INSERT CHARAGrER inserts one space at the
cursor's location , and the KEY TO DELETE
CHARAGrER deletes a single character at the
cursor's location. These keys may be
specified with SETUP (see the Adpatable
System Installation Manual).

4-54

Screen-Oriented Editor: SOE / Z(ap

Z(ap

On the menu: Z(ap

Repeat factors are allowed.

Z(ap deletes all text between the start of
what was previously found, replaced, or
inserted and the curren t position of the
cursor. Use this command immediately after
a F(ind, R(eplace, or I(nsert. If more than
80 characters are being zapped, the editor
asks for verification.

The position of the cursor after the
previous F(ind, R(eplace, or I(nsert is
called the equal mark. Pressing '=' places
the cursor there.

Whatever you deleted by using the Z(ap
command is available for use with C(opy ,
unless there isn't enough room in the copy
buffer. If this is the case, the editor
then asks if you want to Z(ap anyway.

Z(ap isn't allowed after certain
that might scramble the buffer.
commands are: A(djust, D(elete,
and M(argin.

4-55

commands
These

K(olumn,

I

CHAPTER

UTI LIT Y

5

PROGRAMS

Utility Programs

INTRODUCTION

This chapter covers several utility programs
that will help you use the p-System. The
utility programs are code files that you X(ecute
to provide such services as:

• Printing text files.

• Recovering lost files.

• Configuring the p-System for your
particular keyboard and terminal.

• Making programs execute more quickly.

• Debugging programs.

• Showing you the internal details of files.

The utilities described in this chapter fall
into the first four categories. The Program
Development Reference Manual describes several
utilities which fit in the last two categories.
The Adaptable System Installation Manual also
describes several utilities.

5-3

Utility Programs

PRINT

Introduction

The PRINT utility provides a simple way for
p-System users to print text files. The
screen-oriented edi tors in the p-System make
it easy to create and manipulate text
(including documents, memos and programs).
The PRINT utility makes it just as easy to
produce printed versions of such text. PRINT
can break a document into pages, and put
headings on each, including the page number.
In addition. there are a variety of options
for controlling the line spacing and vertical
margins of the printed document.

PRINT complements the other two principal
mechanisms wi thin the p-System for printing
text files (the T(ransfer operation in the
FCiler and the Print Spooler). Neither of
those mechanisms provides any formatting
support (such as inserting page breaks). The
big advantage of using the Print Spooler is
that printing can go on in parallel with other
operations, such as text editing. This can be
a big time saver. PRINT can be used with the
Spooler because PRINT's output can be sent to
a disk file. The Spooler can then be used to
print that formatted file.

5-4

Utili ty Programs

PRINT has been designed to work wi th a wide
variety of printers. It makes minimal
assumptions about special control features
they may have, and can be used wi th either
continuous forms or manual single sheet
loading.

The following section describes the simplest
uses of PRINT. You may never need to know
more. If you do, read the rest of this
section, which provides a systematic
description of all of PRINT's facilities.

Simple Uses of PRINT

To invoke PRINT, simply X(ecute it from the
Command menu of the p-System. PRINT
immediately shows a menu of the available
commands. Some of these cause immediate
action by the program (such as printing a
document) ; others allow you to set up
configuration parameters that will guide a
subsequent printing operation (such as what
disk file to print).

5-5

Utility Programs

Most of these configuration parameters are
initially set up by PRINT for the most coomon
printing situations. In particular, we
assume:

• That you are using continuous paper in your
printer (rather than single sheets);

• Tha t each page can hold at least 66 lines
of printing (or ll-inch paper with 6 lines
per inch); and

• That your printer advances the paper to a
new page when the p-System sends a ASCI I
"form feed" control character to it.

If these buil t-in choices meet your needs,
using PRINT is very simple, and consists of
four steps (once you have PRINT running):

1. Enter the name of the file to be printed,
using the I(nput option on the menu.

2. Use G(o to start the printing. After a
file is printed, use I (nput to select
another file and G(o again to print it.

3. If you need to cause a page advance on the
printer to tear off the printout(s) you've
rmde, A(dvance should do the trick.

4. Finally, when you are done with a printing
session, use Q(uit to leave PRINT.

5-6

Utility Programs

If the printouts produced by this process
aren't what you'd like, or if some of the
assumptions above don't apply in your
situation, read the rest of this section to
discover how PRINT can be configured to serve
your needs better.

Interacting with PRINT

Just as
interact
menu of
options.

in the rest of the
with PRINT by making
options. There are
They may:

p-System, you
choices from a
four kinds of

1. Cause irrrnediate actions. A(dvance, for
instance, moves the paper in the printer to
the next page.

2. Prompt you to enter a sequence of
characters, followed by a <return>. These
characters are a file name, in the case of
I(nput.

3. Request that you enter an integer number.
This number must be positive and have four
digits or fewer. This style of interaction
is used is when you choose the initial page
number for your heading lines.

4. Give you a Yes or No choice. Respond by
pressing 'Y' or 'N'. This style of
response is used with the D(ouble space
option, for instance.

There is also the '?' option which displays
information about how to use the PRINT
utility.

5-7

Utility Programs

Other than the principal menu of comnands,
which occupies most of your display screen,
PRINT does most of its communication with you
through the top line of the screen. Once you
have selected an option. prompts appear on
this line to direct you. Error messages are
also shown on this line and are usually left
there until you press <space> to indicate that
you have noticed the message.

Controlling the Layout of Pages

PRINT allows you to specify the P(age length
you are using and the sizes of the T(op and
B(ottom margins that you desire. All of these
are specified in units of print lines. At the
top of a page, after T(op margin lines of
empty space, a heading line is printed (which
may have the date and page number, for
instance). A blank line follows the heading.
Here is a diagram of a page, with these
parameters shown:

lo.p·o-f page -

- leop margin
blank tines

Heade-r line
..Rlank· l i-ne

".First te.xt line-

... Text~

,-
B.<ottom. ma.rg"in

b lank lin~s-

Bot-tom of page

5-8

Utility Programs

PRINT doesn't attempt to control the
horizontal placement of the text it processes.
Lines are transferred to the printer exactly
as they appear in the file being printed.

The standard header line contains a page
number, the name of the file being printed,
and the current date (as maintained by the
p-System). The format of this line can be
changed, as described in the next section.
Here is an example header line in the standard
format:

5-9

Utility Programs

The initial page number for a file is
ordinarily 1. If you want your page numbers
to start differently, use P(age number before
printing your file.

The D(ouble space and N(umbered lines options
can be used to control those aspects of your
printout's appearance.

The Content of Pages

As mentioned above, the normal operation of
PRINT is to transfer lines without change from
the file being printed to the printer.

There are two exceptions to this general
principle. First, if a line starts with the
command line flag character, it isn't printed.
Usually, this means it is a COMMAND line that
gives directions to PRINT. The two characters
after the flag are examined to see if they
correspond to a valid PRINT command. If they
do, the command is accepted by PRINT. If they
don't, the line is simply ignored. (You can
place comments in your text using this
mechanism.)

The second exception is that a line may
contain the ESCAPE SEQUENCE flag. This
character can be anywhere in the line. As
with the commands, it is the characters after
the escape sequence flag which determine what
happens. In general, however, the escape
sequence is replaced by other text (for
instance, the current page number).

5-10

Utility Programs

These two flag characters can be changed
either from the PRINT menu (using the E(scape
and C(OI1Illand options) or by corrrnand lines
embedded in a file being printed.

Only the first two characters after the
command flag are significant. Additional
characters are ignored. (Therefore,
, • INCLUDE' and '. INCREMENT' are both treated
as include corrrnands.) Corrrnands may be in
either uppercase or lowercase.

COI1Illands may have parameters. The first
parameter must be separated from the command
name by one or more blank characters. All
parameters must be enclosed in quotes. Either
single quotes (,) or double quotes (") may
be used, but both ends of the parameter must
be marked by the same character (that is,
"myfile" or 'myfile').

The commands available in PRINT are as
follows:

INCLUDE This command has one parameter,
which is a file name. Printing
of the current file is
temporarily suspended and the
included file is processed.
When the end of the included
file is reached, processing
resumes on the principal file.
The included file can't itself
contain any INCLUDE commands.
Page numbering is continuous
across included files.

5-11

Utility Programs

INCLUDE allows a large docwnent
to be spread among several
p-System files, but still be
printed with a single PRINT
operation. For example:

.INCLUDE 'MYVOL:MYFILE'

PAGE This coornand has no parameters.
Its effect is
immediate page
printer.

to cause
advance on

an
the

..• PAGE

HEADING

This coornand is useful when the
page breaks that are
autormtically inser ted by PRINT
aren I t the page breaks that you
want. For example:

This corrmand has one parameter,
which becomes the new
specification of the header line
which is printed at the top of
each page. The header line can
also be changed from the PRINT
menu.

You can use this corrrnand in a
document file to establish a
page heading for the printed
version that is specific to the
docwnent. For example:

•header' "fl!y document-Page \page"

5-12

COMMAND

Utility Programs

This corrrnand has one parameter,
a single character (which still
must be enclosed in quotes) •
The character becomes the new
command line flag character.

This infrequently
allows you to
character tha t
corrrnand lines. For

used command
choose the
introduces

example:

ESCAPE

' .• ESCAPE '!'

This command is similar to
COMMAND, except that the
one-character parameter becomes
the new escape sequence flag.

Just as with the command flag,
you may want to change the
escape sequence flag if the
standard one conflicts with
something in your text file.
For example:

5-13

Utility Programs

END This conrnand has no parameters.
It indicates that no more text
should be taken from the current
file. If the current file is an
included file, PRINT returns to
the principal file. If the
current file is the principal
file, printing is discontinued.

END is convenient for EDVANCE
users. The EDVANCE editor
allows you to define special
function key macros by using
text inside of the fi Ie itself.
Also, EDVANCE allows you to keep
an automatic log of update
information wi thin a text file.
Furthermore, whether or not you
used EDVANCE, you may wish to
have an area within your files
where you keep miscellaneous
informaton that you don't want
to be printed along with the
main portion of the file. Any
of this sort of material can be
placed after an END command.
PRINT will ignore it. For
example:

.end
. He re you cou.Ld'" have somE'·

special key definitions for
. EDVANCE.

5-14

Utility Programs

All characters are significant in escape
sequences. There are three standard ones,
which are translated as follows when found in
a line about to be printed:

PAGE

FILE

DATE

The escape sequence is replaced by
the current page number.

The input file name (either the main
file, or the include file, whichever
is active).

The escape sequences is replaced by
the current p-System date, in the
form "January 1, 1983."

A principal application of these
escape sequences is in the header
line which is printed at the top of
each page. You can change the format
of that line either in the PRINT menu
or with the ".header" coornand line in
the file being printed. For example,
the header

Memorandum of UnderstandingC\dateJ-Page \page

would produce printed heading lines
like the following:

Memorandum of ·Understanding (January 13, 1983)-Page 43
Memorandum of Understanding .(May 18, 1983J-P.age 7- . .

5-15

Utility Programs

The provlslon for changing the header line
within the file means that you can have
different headers on different pages. It
would be easy, for instance, to have a blank
header on the first page and some specific
header on subsequent pages.

Output Methods

PRINT directs its output by default to the
device PRINTER:. You can easily change this
definition, however, from the PRINT menu. You
could, for instance, set the output file to be
a disk file or a serial corrrnunications port.
The disk file possibility can be quite useful
since it allows you to store the pagina ted
output of PRINT for later transfer to a
printer. If the Print Spooler is used for
that transfer, you can take advantage of the
Spooler's ability to overlap printing with
other p-Systern operations, particularly text
editing.

PRINT is intended to work with printers which
use continuous forms, but also with printers
which must be loaded with each individual
sheet of paper. The S(top before each page
option in the PRINT menu controls which kind
of printer is assumed. I f the single-shee t
variety is selected, you are prompted to load
the printer before each page is printed.

5-16

Utility Programs

On many single-sheet-oriented printers, the
paper must be inserted about an inch past the
prin ting mechanism so that pinch rollers can
guide it. If you're using such a printer, you
may want to reduce the P(age size and possibly
change the T(op margin, as well. For
instance, if your printer prints 6 lines per
inch and you're using standard 11-inch paper,
you might reduce the P(age size from 66 lines
to 60 lines.

Most printers can interpret the ASCI I form
feed character to mean "advance the paper to
the next page." I f your printer can't turn
off the U(se form feed option, the form feed
character will be replaced by the printing of
a series of empty lines. The effect will be
the same as a form feed, as long as PRINT's
page size and margin options are properly set.

PRINT Invocation Shortcuts

If the standard settings of the PRINT options
suit your needs most of the time, the use of
PRINT is simple and convenient. If, however,
you generally need to change one or more of
the options to do your prin ting , PRINT could
be more awkward to use. The M(ake script
option has been included to address this
situation.

5-17

Utility Programs

This option produces a script file that will
change the options from their defaults on
entry to PRINT to the values that exist at the
time that M(ake script is invoked. You can
also include in this script a corrmand that
invokes PRINT itself, thus reducing your
keystl~kes even further.

When you select M(ake script, you are first
asked to name the script file you want
produced. I f you want this to be a •TEXT
file, you must include the suffix in the title
you supply. The advantage of a •TEXT file is
that it can be easily examined or modified by
a p-System editor. A disadvantage is that it
is at least four blocks long, whereas a
typical nontext file script is only one block
long.

The next prompt asks you to enter the name by
which PRINT should be invoked. Your response
is used as the response to an X(ecute prompt,
so whatever you would use there is
appropriate. If you provide an empty response
to this prompt (that is, an immediate
<return», the program invocation step is left
out of the generated script altogether.

After this second prompt, PRINT produces the
script.

5-18

Utility Programs

Here is an example of M(ake script, along with
a subsequent invocation of PRINT.

Enter name of script file.: JIlYPRINT
Enter name .for invoking print: *PRINT
Execute what fHe? i=!'lYPRINT.

In the first line above, the script file is
dubbed MYPRINT (wi th no suffix). The second
line indicates that the PRINT program is to be
found on the system disk, with the indicated
file name. The third line is the invocation
of PRINT via the newly created script. The
script will execute the program and set all
the options as they existed at the time the
script was created.

If the second response above had been empty,
then an equivalent X(ecute string would have
been I *PRINT i =MYPRINT' •

5-19

Utility Programs

Sunmary of Menu Items

By selecting any of the options below, you
can:

I(nput

O(utput

G(o

A(dvance

M(ake script

Q(uit

Choose the file to be
printed.

Choose the destination of the
print operation.

Print the input file on the
output, according to the
current option settings.

Skip to the next page on the
output.

Build a script file which
will invoke PRINT with the
current option settings.

Leave PRINT.

D(ouble space S e 1 e c t sin g 1 e
double-spaced output.

or

N(urnber

S(top

Cause each line to be
preceded by its sequence for
the current page.

Specify whether single sheet
loading or continuous forms
are assumed by PRINT.

5-20

U(se ASCII FF

Utility Programs

Specify whether the form feed
character or a sequence of
empty lines is used to
separate output pages.

F(irst page Specify the page number on
the first page of a document.

T(op margin Specify the number of blank
lines between the top of the
page and the header line.

B(attorn margin Specify the number of blank
lines between the last line
of text and the bottorn of the
page.

P(age size Specify the number of lines
per page.

E(scape Choose the character which
starts an escape sequence.

C(omnand

H(eader

Choose the character which
starts a cornnand line.

Specify the contents of the
heading line at the top of
each printed page.

5-21

Utility Programs

Summary of Command Lines

By using the following command, you can:

INCLUDE

PAGE

HEADING

COMMAND

ESCAPE

END

Insert an additional file into
the document being printed in
place of the include command.

Cause an immediate page break.

Specify the contents of the
heading for subsequent pages.

Change the command line flag
character.

Change the escape sequence flag
character.

Terminate printing the current
text file.

5-22

Utility Programs

Summary of Escape Sequences

When any of the following escape sequences
occur, the indicated text is substituted:

PAGE

FILE

DATE

The current page number.

The current input file name.

The current calendar date as
maintained by the p-Systern.

5-23

Utility Programs

PRINT SPOOLER

The print spooler is a program that allows you
to queue and print files concurrently wi th the
norrml execution of the p-System (while the
console is waiting for input from the keyboard).

'The queue it creates is a file called
*SYSTEM. SPOOLER , and the files you wish to print
must reside on volumes that are on-line or an
error will occur.

When SPOOLER is X(ecuted, the following menu
appears:

Spool: P{rint, D{elete, L{ist, S(uspend, R{esume, A(bort~ C{lear, Q(uit

The following paragraphs define the menu
options:

P(rint

D(elete

L(ist

Prompts for the name of a file to be
printed. This name is then added to
the queue. If SYSTEM. SPOOLER
doesn't already exist, it is
created. In the simplest case,
P(rint may be used to send a single
file to the printer. Up to 21 files
may be placed in the print queue.

Prompts for a file name to be taken
out of the print queue. All
occurrences of that file name are
taken out of the queue.

Displays the files currently in the
queue.

5-24

Utility Programs

S(uspend Temporarily halts printing of the
current file.

R(esume Continues printing the current file
after a S(uspend. R(esume also
starts printing the next file in the
queue after an error or an A(bort.

A(bort Permanently stops the
process of the current
takes it out of the queue.

printing
file and

C(lear

Q(uit

Deletes all file names from the
queue.

Exits the spooler utility and starts
transferring files to the printer.

If an error occurs (that is, a nonexistent file
is specified in the queue), the error message
appears only when the p-System is at the Coornand
menu. If necessary, the spooler waits until you
return to the outer level.

Program output to the printer may run
concurrently with spooled output. The spooler
finishes the current file and then turns the
printer over to your program. (Your program is
suspended while it waits for the printer.) Your
program should only do Pascal (or other
high-level) writes to the printer. If your
program does printer output using unitwrite, the
output is sent irrmediately and appears randomly
interspersed with the spooler output.

5-25

Utility Programs

The utility SPOOLER.CODE uses the operating
system unit SPOOLDPS. Wi thin this uni t is a
process called spooltask. Spooltask is started
at boot time and runs concurrently with the rest
of the p-System. The print spooler
automatically restarts at boot time if
*SYSTEM.SPOOLER isn't empty. When the file
*SYSTEM.SPOOLER exists, spooltask prints the
files that it names. Spooltask runs as a
background to the main operations of the
p-System.

*SPOOLER.CODE interfaces with SPOOLOPS and uses
routines within it to generate and alter the
print queue within *SYSTEM.SPOOLER.

To restart the print spooling process if
SPOOLER.CODE is executing when the system goes
down, reboot the system, press X(ecute from the
Cornnand menu, enter *SPOOLER.CODE, and press
<return>. Then press R(esume.

5-26

Utility Programs

QUICKSTART

Introduction

The QUICKSTART utility can be used to make
programs start more quickly. A program's
startup time is the amount of elapsed time
between the moment the invocation of the
program is requested and the moment the
execution of the program actually comnences.
During this startup time the p-System is
building the execution environment for the
program.

A program's execution environment is a network
of p-System data structures, together with the
areas of memory required by the program for
its data. Each compilation unit contained
within the program has a table in the
execution environment which it uses during its
execu tion to refer to other compilation units.

The QUICKSTART utility constructs a
description of the execution environment for a
program and generates a code file for the
program which contains this execution
environment description. The operating system
detects the presence of execution environment
descriptions within program code files and
attempts to reconstruct the required execution
environment from such descriptions when the
programs are invoked. For large programs
built out of a collection of separately
compiled p-System uni ts , this reconstruction
process is considerably faster than the normal
execution environment construction process.

5-2:7

Utility Programs

After QUICKSTART has been used on a code file,
that code file may be invoked with the X(ecute
command as usual.

The reduction in invocation time for a
quickstarted program is achieved by
reconstructing the program's execution
environment from the description in the code
file instead of building the environment from
scratch each time the program is invoked.
Except for the difference in invovation time,
the execution of a quickstarted program is
identical to that of the original program.

When a quickstarted program is executed, the
system first inspects the program code file to
determine if an execution environment
description is present within the program code
to reconstruct the execution environment
required by the program from the description
in the code file. If the code file doesn't
contain an environment description, or the
environment description contained wi thin the
code file is obsolete, the system attempts to
build the environment for the program in the
usual fashion.

5-28

Utility Programs

QUICKSTART Utility Operation

This section describes the operation of the
QUICKSTART utility program.

System Environment Preparation

As the first step in using the QUICKSTART
utility, you must set up the system
environment for normal execution of the
program. This includes making sure that the
proper volumes are on-line and that any
required library files are available. Note
that the QUICKSTART utility uses the same
components for locating the uni ts which are
referenced by the program it is processing.

QUICKSTART provides a set of toggle options
that control the manner in which the
quickstarting of a program is accomplished.
The settings of these options can influence
the way in which you set up the system
environment prior to running QUICKSTART.
These toggle options are discussed next.

C(opy Toggle Option

The C(opy toggle option determines whether
the output of QUICKSTART is a modified
version of the original code file. or a
new code file.

5-29

Utility Programs

In its default setting, the C(opy toggle
option is off. This causes QUICKSTART to
modify the original code file. The new
execution environment description is
ei ther appended to the end of the code
file, or will be written on top of an old
description already present. Using
QUICKSTART in this manner avoids the
rather s low process of making a copy of
the original file; however, there is a
chance that the insertion of the new
execution environment description will
fail due to insufficient disk space at the
end of the code file. You should make
sure that a section of unused disk space
follows the code file. The number of
unused blocks which are required depends
on the size and complexity of the program.

When the C(opy toggle option is on, a new
code file is created by QUICKSTART and the
execu tion environment is appended to the
end of that file. Any previous
environment description embedded in the
code file is discarded. This method of
using QUICKSTART is somewhat slower. But
it is safe and more likely to insure that
the size of the code file can be extended
if necessary to install the new
environment description. In order to use
QUICKSTART in this manner, there must be
enough disk space for a copy of the entire
code file on one of the on- line volumes.

5-30

Utility Programs

L(ibrary Copy Toggle Option

QUICKSTART installs a checksum part number
into the library code files which are used
by the program. The checksum is utilized
to detect when an environment description
has become obsolete due to a change in one
of those library code files. A new
checksum is only inserted into a library
code file if that file lacks a valid
checksum. Because of thi s , it must be
possible for QUICKSTART to write to the
volumes containing library code files
without valid checksums.

With some p-System installations, a
referenced library code file may reside on
a RAM disk rather than a physical disk.
When QUICKSTART updates such a code file,
the updated information will be lost the
next time the computer is powered off. As
an aid to users who use RAM disk, the
QUICKSTART utility has another toggle
option called L(i brary copy. When the
L(ibrary copy toggle option is on,
QUICKSTART first updates the original copy
of a referenced library code file with a
new checksum, and then asks you if the
updated library code file contents should
be copied to another file. Thus this
facili ty can be used to save the updated
library code files on a physical disk.

5-31

Utility Programs

M(essages Toggle Option

The QUICKSTART utility has the capability
of writing detailed progress messages to
the console. These progress messages
provide you with the names and locations
of the compila tion units which are being
included within the execution environment
for the program being quickstarted. In
addition, these messages advise you of the
copying or modification of code files.
Mos t of the time you won't require the
large amount of information provided by
the progress messages. The information
can be useful, however, when you are
trying to diagnose the cause of a
malfunction in a program. The QUICKSTART
utility has a M(essages toggle which
controls whether or not progress messages
are displayed. The default setting of the
M(essages toggle option is OFF, which
results in the progress messages being
suppressed.

Using The QUICKSTART Utility

The QUICKSTART utility (QUICKSTART.CODE) ,
displays this menu:

.. Q~i ~kst~rt :-. P (rograrri, S·(y.ste~·; -C(opy,' L5.it:;,.,arY, .~.(essages, _~ (u-i t."·.· ..
- .. _ Toggle se·t-tings: CoPY OF-F, Library·copy Or" Messages OFF· .

5-32

Utility Programs

The firs t line shows the set of commands
recognized by QUICKSTART. The second line
displays the current settings of the toggle
options. The toggle option settings shown
above are the default settings.

The C(opy, L(ibrary, and M(essages commands
cause the setting of the corresponding
toggle option to be changed. After you
select one of these commands, the
appropriate toggle option display is updated
to reflect the change.

The P(rogram command is the command which is
used to initiate the process of
quickstarting a program. The operation of
the P(rogram command is described in the
following section.

The S(ystem command directs the QUICKSTART
utility to build a description of the
p-System operating system environment into a
new system code file. This command is
typically used only by sophisticated
p-System users who are creating a new
p-System operating system code file. The
operation of the S(ystem command is
basically the same as the operation of the
P(rogram command described in the following
section. The following section contains a
supplemental description of the S(ystem
command.

The Q(uit command is used to exit the
QUICKSTART utility program.

5-33

Utility Programs

The QUICKSTART utility menu is displayed
after the completion of each P(rogram or
S(ystern command.

The error messages which may be output by
the QUICKSTART utility are listed and
explained later. Generally, any error
causes the processing associated wi th the
current QUICKSTART command to be aborted and
any output file discarded. QUICKSTART may
occasionally generate warnings which appear
in the form of a message on the console.
These warning messages are also listed later
in this chapter.

P(rogram Command

When the P(rogram command is entered, you
are prompted:

Qui ckstart what program?

You should enter the name of the code file
to be quickstarted (.CODE is appended to the
name you enter if necessary) • A plain
<return) causes the current coornand to be
canceled and the QUICKSTART menu to be
displayed.

5-34

Utility Programs

Once the input code file has been
successfully opened, the action taken by
QUICKSTART depends on the setting of the
C(opy toggle option. If the C(opy toggle
option is enabled, QUICKSTART prompts for
the output file.

To what codef il e?

An empty <return> cancels the current
command and returns to the QUICKSTART menu.
You rmy utilize the "$" character in the
response to this prompt to denote the
corresponding file name. For example, if
the input file was 'MYDISK:BIGPROG.CODE' and
your response to the above prompt is
'NEWDISK:$', QUICKSTART would generate the
output file 'NEWDISK:BIGPROG.CODE'.

QUICKSTART automatically concatenates the
suffix ".CODE" to the output file, unless
you terminate the file name with a period.
If you do terminate the file name with a
period, however, a data file (rather than a
code file) is created. You can create
SYSTEM.PASCAL in this manner, but all other
files must be created as code files (or they
won't be executable).

Once the input file and the output file have
been opened, QUICKSTART proceeds to create a
copy of the original program code file. The
code segments contained within the original
program code file are copied one at a time
and any old environment description for the
program isn't copied.

5-35

Utility Programs

When the M(essage toggle option is on,
QUICKSTART displays a message at the start
of the copying process which identifies the
source and destination files involved in the
copying. When the copying is completed ,
QUICKSTART displays the message "Copying
complete. " along with a report on the
number of blocks which were copied.

Also, when the M(essages toggle option is
on, the QUICKSTART utility displays messages
which identify the names and library code
file locations of the individual units and
segments which are included in the
description of the execution environment of
the program. The following is an example of
the messages that appear during a typical
QUICKSTART P(rogram command:

Quick~tart:. P(rogra!ll, S(ystem, 'C(opy; ·L(ibrary, 'Hessages, Q(uit ()
· Toggl~ set'tings: ·Copy ON, ·library copy OFF, Messages ON .

: Quickstart what program? fllYDISK:SUPERPROG.C,ODE
To what codefi le? NEWDISK:S -
Copyi ng fllYDlSK: SUPERPRO.G. CODE to NEWDISK:SUPERPROG. CODE

· Copying complete. (278 ·blocks ·copied) .
- Using KERNEL from .SYSTEM.PASCAL

Including PROGINIT as segment of ·SUPERPRO from NEWDISK:SUPERPROG •.CODE
Using SUPERPRO from NEWDISK:SUPERPROG.C.ODE -
Using· PASCALIO ,from .SYSTEM.PASCAL
·Using ·KEAPOPS from *SYSTEM. PASCAL
Using PAGEMGR from ALTDISK:PAGEl'IGR.CODE .
Installing new checksum into ALTDISK:EXPR.CODE
Install ing 'new checksum ·into .SYSTEM.LIBRARY
Using LONGOPS from .SYSTEM.LIBRARY .
Including FACTOR as· segment of EXPR from ALTDISl(:EXPR.CODE
Using EXPR -from ALTDISK:EXPR.CODE

· Qu'fckst-art construction compJete... _
Quickstart: P(rogram, S(yst , C(opy, L(ibrary, M(essages, Q(uit ()
l;ne count error, count= 19 .

5-36

Utility Programs

A message of the form "Using UNITNAME from
FILE.NAME" reports the inclusion of the unit
UNITNAME which is located in the code file
FILE.NAME into the description of the
execution environment for the program. A
message of the form "Including SEGNAME as
segment of UNITNAME from FILE.NAME" reports
the inclusion of the segment SEGNAME as a
part of the unit UNITNAME located in the
library code file FILE. NAME.

A message of the form "Installing new
checksum into FILE.NAME" informs you of the
fact that QUICKSTART is attempting to
install a checksum into library code file
FILE.NAME.

When a library code file is updated with a
new checksum and the L(i brary copy toggle
option is on, QUICKSTART asks you if a copy
of the updated library code file is desired:

Copy updated fi le FILE.NAIlE?

This prompt is repeated until you respond
wi th a 'y' or 'N'. If you press 'Y',
QUICKSTART prompts for the file to copy the
updated library code file:

Copy to what codefHe?

5-37

Utility Programs

An empty <return> cancels the copying
operation. The following is an example of a
library code file copying operation during a
P(rogram command:

Install ing new checksum into RAMOISK:SYSTEM.LlBRARY
Copy updated ,file RAMOISK:SYSTEM.LIBRARY? Y
Copy to what codefi le? MYOISK:$.
Copying RAMOISK:SYSTEM.LIBRARY to MYOISK:SYSTEM.LIBRARY
Copying complete. (34 blocks copied>

S(ystem Conmand

The system command is used to quckstart the
operating system (SYSTEM. PASCAL) • This is
intended to make the p-System boot more
quickly.

NOTE: Although the S(ystem command is
implemented within QUICKSTART, the operating
system doesn't currently take advantage of
it. This means the p-System will boot with
the same speed whether or not the operating
system is quickstarted. Quickstarting of
the operating system will be supported in a
future release of the p-System.

5-38

Utility Programs

The S(ystem corrnJand directs QUICKSTART to
install an environment description into a
system code file presumed to contain the
operating system. The operation of the
S(ystem command is identical to the
operation of the P(rogram cornnand with the
following exceptions:

• The generated environment description
includes all of the units which reside in
the system code file being processed,
even if a subset of the units aren't
referenced by the standard p-System
units.

• The generated environment description
doesn't contain references to the
p-System code file in use at the time
when the QUICKSTART utility is executed.

• An unresolv~d unit reference causes a
warning message to appear on the console
instead of resulting in a fatal error
which terminates the processing
associated with the command. This allows
the p-Systern to contain references to
units which provide the support for
optional p-System components.

• The system code file must contain a unit
with the name KERNEL, and that unit must
have a subsidiary segment with the name
USERPROO.

5-39

Utility Programs

In the current p-System implementation, all
of the units referenced within the operating
system must reside in SYSTEM PASCAL.
QUICKSTART doesn't enforce or check for this
restriction however. In addition,
QUICKSTART doesn't enforce or check for
other implementation restrictions on the
structure or type of units which can be
placed in SYSTEM PASCAL.

Obsolete Environment Descriptions

Once an execution environment description is
installed in a code file, it will be
utilized to quickly construct the program's
execution environment as long as the
description doesn't become obsolete. An
execution environment description becomes
obsolete when one or more of the following
alterations are made to the p-System
environment in which the program is
executed:

• SYSTEM. PASCAL is changed and the program
contains a reference to an operating
system unit which is no longer available.

• A referenced library code file is
recompiled, reassembled, or altered using
the p-System LIBRARY utility.

• A referenced library file can't be found
after searching on the following volumes:
the original volume where referenced, the
prefix volume, the root volume.

5-40

Utility Programs

Retention of the exact volume locations of
referenced lihrary code files result in
optimal program invocation times. An
individual library code file may be moved to
a different physical location on the same
volume without any resulting increase in
program invocation time.

As mentioned previously, when an execution
environment description becomes obsolete, it
is still possible to execute the program.
In such a situation, the p-System ignores
the obsolete environment description and
proceeds with the normal invocation of the
program.

5-41

Utili ty Programs

QUICKSTART Error Messages

The following is a list of the error messages
which can be generated by the QUICKSTART
utility program. Following each error message
is a brief description of the error.

• Quickstart construction complete

This is not an error message, but instead
indicates successful completion of the
QUICKSTART environment description
generation process for a given program.

• Can I t find FILE.NAME

Indicates that the specified code file
couldn't be found.

• Error reading library FILE.NAME

An I/O error was detected by QUICKSTART
when reading the specified library code
file.

• Error inserting checksum into FILE.NAME

An I/O error was detected by QUICKSTART
when inserting a new checksum into the
specified library code file.

• Error creating FILE.NAME

An I/O error was detected by QUICKSTART
when creating the indicated library code
file copy.

5-42

Utility Programs

• Error reading FILE.NAME

An I/O error was detected by QUICKSTART
when reading the indicated code file
FILE.NAME.

• Error writing FILE.NAME

An I/O error was detected by QUICKSTART
when writing to the indicated code file.

• Library list file FILE.NAME isn I t a text
file

The indicated file was
library text file, but
file.

specified as a
it isn't a text

• I/O error reading library list file
FILE.NAME

An I/O error was detected when reading the
indicated text file which was specified as
a library text file.

• Warning: Library FILE.NAME not found

The indicated file was included on the
library code file search list but couldn't
be found. This is treated as a warning and
not a fatal error since the missing library
file is simply omitted from the list of
library code files to search.

5-43

Utility Programs

• Warning: UNIT_NAME unit not found

The indicated unit is referenced by the
system code file being processed by the
QUICKSTART utility but can't be found.
This is treated as a warning instead of a
fatal error since the operating system is
allowed to contain references to optional
system units.

• Unit UNIT NAME not found

The indicated unit is required by the
program being processed by QUICKSTART, but
it can't be found wi thin the program's code
file or within one of the library code
files.

• Duplicate unit UNIT NAME

This error indicates that there is more
than one unit within the program's
execution environment with the indicated
name. This error can occur if there is
more than one uni t wi th the name wi thi n
SYSTEM.PASCAL or when the name of the
program is the same as the name of one of
the units which reside in SYSTEM.PASCAL.

5-44

Utility Programs

• Too many library code files referenced

The required execution environment for the
program contains references to more
individual library code files than can be
handled by the system. The current
implementation allows an execution
environment to contain references to at
most 50 distinct library code files. This
limitation can be worked around by using
the LIBRARY utility to package several
units into a single library code file.
With the exception of SYSTEM. PASCAL , there
is no limit on the number of units which
can be packaged into a library code file.

• Too many system uni ts referenced

The required execution environment for the
program contains references to more system
units than can be handled by the system. A
"system" uni t is defined to be any uni t
which resides in the system code file
SYSTEM. PASCAL. The current implementation
allows an execution environment to contain
references to at most 50 distinct system
units.

• No program in code file to execute

The code fi Ie to be executed doesn't
contain a segment which is classified as
being a host program. A unit by itself
isn't an executable program. (This error
can also appear when the QUICKSTART utility
S(ystem corrrnand is used and the system code
file being processed doesn't contain a unit
wi th the name "KERNEL".)

5-45

Utility Programs

• System code file doesn't contain a USERPRCG
segment

This error message appears when the
QUICKSTART utility S(ystem command is used
and the system code file being processed
doesn't contain a segment with the name
"USERPROO" •

• Unit UNIT NAME must be linked via L(ink
COlllTland

The indicated uni t contains references to
assembly language routines which must be
linked into the program by SYSTEM.LINKER
before the program can be invoked.

• Segment SEG NAME is an obsolete code
segment

must be
a more
it can

The indicated code segment
recompiled or reassembled with
recent compiler or assembler before
be executed on the current system.

• Insufficient memory to build environment

The amount of available memory isn I t
sufficient to allocate the structures
required to construct the execution
environment for the program being invoked.
The best work around for this situation is
to reduce the number of separate library
code files on the library code file search
list and to reduce the total number of
segment dictionary blocks which are
contained within those library code files.

5-46

Utili ty Programs

II Environment descriptor buffer overflow

Internal error in the logic of the
QUICKSTART utility.

5-47

Utility Programs

REAL CONVERT

The REAL CONVERT utility can make some programs
run more quickly. It converts real constants in
a code file from canonical (compiled) form to
na tive machine format. It eliminates the need
to convert real constants at segmen t load time,
thus increasing the initial loading speed of the
program segments, as well as the overall
run-time speed of the program. This is
especially important for programs tha t require
frequent loading of segments containing real
constants.

The real constant conversion utility is a filter
that works on code files, replacing canonical
reals with run-time reals in-place. Hence, when
the source file isn't available, you should make
a backup copy of the code file to be processed
before executing the utility program. This
avoids the possibility of destroying the code
file while executing REAL CONVERT with an
unsuccessful write to disk.

Because the conversion algorithm uses real
arithmetic of the host processor, the utility
must be executed on the processor on which the
output file will run. In most cases, a code
file produced by the utility won't run on
another processor, reducing the portability of
otherwise transportable code.

5-48

Utility Programs

To use the utility, X(ecute REALCONV from the
Commnd menu. It responds with the following
prompt:

€NTER FILE NAME:

Respond by entering the name of the code file to
be processed, followed by <return>. You don 't
have to append the suffix .CODE.

If REAL CONVERT can't find the file, it prints
the message 'File not found t and asks you to
enter the file name again. Once a correct file
is entered, REAL CONVERT begins translating.

I f REAL CONVERT can't complete the conversion
successfully, it prints a message and stops.
The messages can be:

not enough" memory
error in· reading •••

The dots stand for:
segment dictionar1es
first block .
constant pool
s.egment
(a's "the 'case may be).

error i.n writing-segment_
too !"any.: dict,ionaries

I Not enough memory' means that the segment to be
processed is larger than the available memory
space.

If the message is 'error in reading ••• ', X(ecute
REALCONV again.

5-49

Utility Programs

I f the message is 'error in writing segment',
then, before X(ecuting REALOONV again, you have
to restore the code file. Restoring the code
file depends on the availability of the source
file. If the source file is available, compile
it again and save the code file. If only the
code file was originally available, make a copy
of the backup code file. (Remember to backup
the original code file.)

'Too many dictionaries' means that you have more
than 80 segments in the file.

The probability of getting any of the three
messages is extremely slight, but it can happen.

If REAL CONVERT executes successfully, a dot is
written on the console for each segment
converted; and, once the conversion is
completed, the message 'Enter file name:' is
displayed so you can process another file. When
there are no more files to process, answer the
prompt by pressing <return> • This exi ts REAL
CONVERT and returns you to the Command menu.

5-50

Uti lity Programs

LIBRARY

LIBRARY.CODE is a utility program that allows
you to group separate compilations (units or
programs) and separately assembled routines into
a single file. A library is a concatenation of
such compilations and routines. Libraries are a
useful means of grouping the separate pieces
needed by a program or group of programs •
Manipulating a single library file takes less
time than if the various pieces it contains were
each within an individual file. Libraries
generally contain routines relating to a certain
area of application; they can be used for
functional groupings much as units can. Thus,
you might want to maintain a math library, a
data file-management library, and so forth-each
of these libraries containing routines general
enough to be used by many programs over a long
period of time.

Individual programs might also take advantage of
the library construct. If a program uses
several units suitable for compiling separately,
but the units themselves are too small to
warrant putting each into its own file, you
would want to construct a single library
containing all of those units.

Even if a file contains only a single unit or
routine, it is treated as a library when the
unit or routine is used by some external host.

5-51

Utility Programs

Library is useful for putting units into
SYSTEM.LIBRARY or other libraries and grouping
assembly routines together.

This section uses the term compilation unit. A
program or unit and all the segments declared
inside it are called a compilation unit. The
segmen t for the program or uni t is called the
host segment of the cornpila tion unit. Segment
routines declared inside the host are called
subsidiary segments. Units used by the host
aren't segments belonging to that compilation
unit. Units used by the compilation unit
generate information in the host segment called
segment references. The segment references
contain the names of all segments referenced by
a compilation unit, and the operating system
uses this information to set up a run-time
environment.

Some routines called from hosts exist in units
in the opera ting system and, therefore, appear
in segment references, even though there is no
explicit USPS declaration. For example, WRITELN
resides in the operating system UNIT PASCALIO,
so the name PASCALIO appears in the segment
references of any host that calls WRITELN.

Using Library

When Library is executed, it displays a prompt
asking for an output file name. The file name
must end in .CODE. Library relOOves an old
file with the same name as the new library.

5-52

Utility Programs

Library then displays a prompt asking for the
input file name. .CODE is autormtically
appended.

Library Example

You specify SCREENOPS.CODE as an input file.
Library displays the following listing.

Lib~ary:' N(ew, 0-9(slot-to--.lo~, E(very, S(elect, C(omp-unit, -F(i ll,?
lnp",t file? SCREENOPS<return> -

o u SCREENOP _ 582
1 s SEGSCHfl 508-
2 S SEGSCPRO 229
~ s SEGSCCHE 126_

Output file? NEW.CODE<return>

The preceding display shows that the file
SCREENOPS consists of one unit and three
segment routines. There are four possible
types of code that can occupy the slots in a
library: units, programs, segment routines,
and assembled routines. Library displays the
type, along with the name and length (in
words) of each module.

5-53

Utility Programs

Library's menu shows the various commands
available.

• The N(ew corrrnand displays a prompt asking
for a new input file.

• The A(bort corrrnand stops Library without
saving the output file.

• The Q(uit corrrnand stops Library and saves
the output file. Then Library displays the
prompt, 'Notice?' , at the top of the
screen. Enter copyright notice and press
<return>. It is placed in the output
file's segment dictionary. Pressing
<return> without entering a copyright
notice exits Library without writing a
copyright notice.

• The T(og corrrnand toggles a switch that
determines whether or not INTERFACE parts
of units are copied to the output file.

• The R(efs corrmand lists the names of each
entry in the segment reference lists of all
segments currently in the output file. The
list of names also includes the names of
all compilation units currently in the
output fi Ie, even though their names may
not occur in any of the segment references.

5-54

Utili ty Programs

The remalnlng five commands allow code
segments to be transferred from the input file
to the output file •

• A given slot can be transferred to the
output file by entering a digit (0 through
9). Library then displays a prompt:
'Copy from slot # ?' along wi th the digi t
just entered. If that is the name of the
slot, press <space>. If that is the first
digit of a two-digit slot number, enter the
second digit and press <space>. Library
confirms the entry before actually copying
code. Press <backspace> to correct errors.
If you press <return> without entering a
number, the copy doesn't happen and Library
redisplays its menu.

If the destination slot in the output file
is already filled, the system displays a
warning and no copy takes place. I f an
identical code segment is already present
anywhere in the output file, the new code
segment is copied anyway •

• The E(very conmmd copies all of the codes
in the input file to the output file. If,
for any code segment, the corresponding
slot in the output file is alread filled,
then Library searches for the next
available slot and places the code there.
If, for any code segment, an identical code
segment already exists in the output file,
that segment isn't copied over.

5-55

Utility Programs

• The S(elect conrnand causes Library to
display a prompt asking which code segments
to transfer. For each code segment not
already in the output file, Library
displays the prompt: 'Copy from slot
It ? I • Pressing I Y, or ' NI causes the
segment to be copied or passed by; pressing
, E ' causes the remainder of the code
segments to be transferred (as in E(very);
pressing <space> or <return> aborts the
S(elect. If the corresponding slot in the
output file is filled, Library searches for
the next available slot and places the code
there.

• C(omp-unit causes Library to display the
prompt: 'Copy what compilation unit?'.
The compilation unit named is transferred
along with any segment procedures that it
references. Procedures already present in
the output file aren't copied.

• F(ill does the equivalent of a C(omp-unit
corrrnand for all the compilation units
referenced by the segment references in the
output file.

• I (nput displays the next page of the
segment dictionary in the input file. (If
there are more than 16 code segments in the
file, two or more segment dictionary pages
are required.)

• O(utput displays the next page of the
segment dictionary in the output file.

5-56

Utility Programs

SETUP

SETUP is provided as a system utility that "sets
up" the p-System to properly interface with your
hardware. It resides in a file called
SETUP.CODE and creates a data file containing
detailed inforrration about your terminal and a
few miscellaneous details about the system. You
can run SETUP and change the data as rrany times
as you want. After running SETUP, you must
reboot so that the system starts using the new
information. (In some cases, you can jus t
I (nitialize.) You should also backup the old
data file-at least until you're sure that the
new one is correct.

SETUP takes its initial inforrration from a file
called SYSTEM.MISCINFO and can create a new
version of that file called NEW.MISCINFO. The
old version must be removed or renamed and the
new version renamed SYSTEM.MISCINFO before some
of the changed values it may contain can become
effective.

SYSTEM.MISCINFO contains three types of
informa tion:

1. Miscellaneous data about the system.

2. General information about the terminal.

3. Specific information about the terminal
control keys.

5-57

Utility Programs

Running SETUP

Run SETUP like any other program with the
X(ecute corrmand. It will display the word
'INITIALIZING I followed by a string of dots,
and then the menu:

SETUP: C(HANGE T(EACH H(ELP Q(UIT (version]

To select any option, just press its initial
letter.

When H(ELP appears on a menu, it can describe
all the options on that menu.

T(EACH gives a detailed description of how to
use SETUP. Most of it concerns input formats,
which are mainly self-explanatory. However,
if this is your first time running SETUP, you
should look through all of T(EACH.

C(HANGE gives you the option of going through
a prompted menu of all the items or of
changing one data item at a time. In either
case, the current values are displayed, and
you have the option of changing them. If this
is your first time running SETUP, the values
given are the system defaults. You will find
that your particular terminal probably
requires different specifications.

5-58

Utility Programs

Q(UIT has the following options:

H(ELP).

M(EIDRY) UPDATE, which places the new
values in main memory.

D(ISK) UPDATE, which creates NEW.MISCINFO
on your disk for future use.

R(ETURN), which lets you go back into SETUP
and make more changes.

E(XIT), which ends the program and returns
you to the Command menu.

Please note that if you have a NEW .MISCINFO
already on your disk, D(ISK) UPDATE will write
over it.

When you use SETUP to change your character
set, don I t underestimate the importance of
using keys you can easily remember and of
making dangerous keys, like BREAK, ESCAPE, and
RUBOUT, hard to hit.

5-59

Utility Programs

Once you have run SETUP, always backup
SYSTEM.M1SCINFO under another name.
(OLD.MISC1NFO is one suggestion.) You also
might want to name your backups according to
different terminals; for example,
ADDS.M1SCINFO, IQ120.M1SCINFO, TELUD.M1SCINFO,
and so on. Then, change the name of
NEW.M1SCINFO to SYSTEM.M1SCINFO and reboot.
You can also update to memory, alone, and
continue using the system without rebooting.
However, the results of your doing this may
not always be what you wanted-and you won't
have a backup. In general, M(EMORY UPDATE is
a Q(UIT option you will use only when
experimenting. If you do run into trouble,
remember that you can save the current
in-memory SYSTEM.MISCINFO by l~ning SETUP and
performing a D(1SK) UPDATE before you change
any data items.

When you reboot or I(nitialize, the new
SYSTEM.M1SCINFO will be read into main memory
and the system will use its data, provided it
has been stored under that name on the system
disk (the disk from which you boot).

The only thing SETUP won't arrange for you, as
far as terminal handling goes, is to tell the
system how to do random cursor positioning for
your terminal. This is a fea ture that the
Screen-oriented Editor requires. To learn how
to support this capability, see the section on
the SCREENOPS unit in the Program Development
Reference Manual. Also, see the section on
GOTOXY in the Adaptable System Installation
Manual.

5-60

Utility Programs

Miscellaneous Notes for SETUP

In general, if SETUP prompts for a feature
that your terminal doesn' t have, set the i tern
to NUL (zero).

Set your terminal to run in full duplex, with
no auto-echo.

Don't use terminal functions that do a "delete
and close up" on lines or characters-not all
terminals have these functions, so they are
supplied through the Screen-oriented Editor's
software.

You can use SETUP to specify two- or
three-character control (escape) sequences
from the terminal keyboard. For information
concerning three-character escape sequences,
see the Adapatable System Installation Manual
under ANSI terminals.

5-61

Utility Programs

If you use the ANSI SCREENOPS unit, instead of
the standard SCREENOPS, the p-System ignores
all of SETUP's screen parameters. They
include:

BACKSPACE
ERASE LINE
ERASE SCREEN
ERASE TO END OF LINE
ERASE TO END OF SCREEN
LEAD IN TO SCREEN
MOVE CURSOR HOME
MOVE CURSOR RIGHT
MOVE CURSOR UP

In previous versions of the p-System, there
were only 6 storage devices (4, 5, 9 through
12). The number of storage devices is now
configurable with SETUP. After the
highest-numbered storage device, subsidiary
voll.lIIles are allocated device numbers. The
number of subsidiary volumes is also
configurable. Above the highest-numbered
device set aside for subsidiary volumes,
user-defined serial devices may be defined.
The maximum number of user-defined serial
devices is 16. The highest unit number
allowed for any of these devices is 127. The
following fields allocate these unit numbers:

FIRST SUBSIDIARY VOL NUMBER
MAX NUMBER OF SUBSIDIARY VOLS
MAX NUMBER OF USER SERIAL VOLS

These fields are described below.

5-62

Utility Programs

The memory update feature of SETUP doesn I t
update any of the following fields:

HAS SPOOLING
HAS EXTENDED MFM)RY
CODE POOL SIZE
CODE POOL BASE[FIRST WORD]
CODE POOL BASE[SEroND WORD]
SEGMENT ALIGNMENT
FIRST SUBSIDIARY VOL NUMBER
MAX NUMBER OF SUBSIDIARY VOLS
MAX NUMBER OF USER SERIAL VOLS

In order to update these fields, create a new
SYSTEM.MISCINFO on the boot disk and reboot.

5-63

Utility Programs

SYSTEM.MISCINFO - Data Items

The information in this section is very
specific; you may skip it on first reading.
However, if you have a question ahout a
certain data item, look in this section.
Default values are shown and, sometimes, are
our recommendations. When no suggested values
are given, you should consult your own
terminal's documentation. The items are
ordered according to SETUP's menu.

If you are using a hard copy terminal or a
storage screen, rather than a CRT, you can
ignore all the data i terns that are only used
by the Screen-Oriented Editor, leaving them
set to their defaults. In particular, if you
are in doubt about a particular item, it is
safest to leave it set to NUL. Always leave
items set to NUL that concern features that
your terminal doesn't have (ERASE LINE, for
instance) ; the software takes care of these
situations.

Please note tha t SETUP frequently
distinguishes between a character that is a
key on the keyboard and a character tha t is
sent to the screen from the system; on some
terminals, two different characters may
perform the same function. On other
terminals, the key pressed and the character
sent for a given function may be the same.

5-64

Utility Programs

There are a few characters you can I t change
wi th SETUP. These are CARRIAGE RETURN
(<return>) , LINE FEED (<If>) , ASCI I OLE
(CTRlr-P), and TAB (CfRlr-I). It is assumed
that <return>, <If>, and TAB are consistent on
all terminals. ASCII OLE (data link escape)
is used as a blank compression character.
When sent to an output text file, it is always
followed by a byte containing the number of
blanks which the output device must insert.
If you try to use CTRlr-P for any other
function, you will run into trouble.

BACKSPACE

When sen t to the screen, the backspace
character should move the cursor one space to
the left. Default: ASCII ES.

CODE POOL BASE[FIRST WORD]
CODE POOL BASE[SEroND WORD]

Use these two entries to determine where the
code pool resides on machines that use
extended memory.

5-65

Utility Programs

On some extended memory systems, these two
words, taken together, make up the 32 bi t
address for the base of the external code
pool. The FIRST WORD is the most-significant
16 bits, and the SECOND WORD is the
least-significant 16 bi ts. The
least-significant four bits ITRlst always be 0
on 8086 systems. Depending upon your memory
configuration, for 8086 systems you might set
these values as follows:

FI RST WORD = 1
SECOND WORD = 0

This indicates the binary value of 1 followed
by 16 zeros (the start of the second 64K
area) •

On 9900 systems, the FIRST WORD is the 990/10
memory BIAS. (This isn't a straight memory
address; see your hardware manual for more
information concerning 9900 BIAS.) It
defines the start of the code pool area. The
SECOND WORD isn't used. There is no error
checking done on this value, anywhere, except
by the 9900 hardware.

NOTE: The PoolBase field in the Pooldes
record within the operating system will be set
to the value indicated by these two fields.
If the code pool is internal (that is , you
aren't using extended memory), set both words
to O.

5-66

Utility Programs

NOTE: Don't execute •HELPROC and •RELFUNC
assembly language routines on TI 9900 systems
when an external code pool is being used.
Attempting to execute such a routine results
in run-time error number 11 (instruction not
implemented). Use .PROC and .FUNC, which
forces code to be placed in the heap-instead
of the external code pool.

CODE POOL SIZE

If the code pool is external, this entry
indicates the number of WORDS, minus one,
available for it to fill. The Poolsize field
in Pooldes will be set to this value. This
value may be as great as 32767 (a 64K area).
It may also be smaller, if desired, but it
should be at least 12287 (a 24K area). The
base address of this area is given by the two
code pool base words. This value is ignored
if you aren't using extended memory.

EDITOR ACCEPT KEY

This key is used by the Screen-oriented
Editor. When pressed, it ends the action of a
command and accepts whatever actions were
taken. Default: ASCII ETX.

5-67

Utility Programs

EDITOR ESCAPE KEY

This key is used by the Screen-Oriented
Editor. It is the opposite of the EDITOR
ACCEPT KEY-when pressed, it ends the action
of a activity and ignores whatever actions
were taken. Default: ASCII ESC.

EDITOR EXCHANGE-DELETE KEY

This key is also used by the Screen-0riented
Editor. It operates only while doing an
X(change and deletes a single character.

EDITOR EXCHANGE-INSERT KEY

Like the EDITOR EXCHANGE-DELETE KEY, this only
operates while doing an X(change in the
Screen-0riented Editor-i t inserts a single
space.

ERASE LINE

When sent to the screen, this character erases
all the characters on the line that the cursor
is on.

ERASE SCREEN

When sent to the screen, this character erases
the entire screen.

5-68

Utility Programs

ERASE TO END OF LINE

When sent to the screen, this character erases
all characters, starting at the current cursor
position to the end of the same line.

ERASE TO END OF SCREEN

When sent to the screen, this character erases
all characters, starting at the current cursor
position to the end of the screen.

FIRST SUBSIDIARY VOL NUMBER

This entry is the first unit number to be used
as a subsidiary volume. For example, if you
set it to 14, the first subsidiary volume is
device #14:.

5-69

Utility Programs

NOTE: In previous versions of the p-System,
only 6 storage devices were allowed: 4, 5, 9
through 12. Now the number of storage devices
is configurable. The devices from 9 through
"First subsidiary vol number" -1 are now
standard storage devices. Subsidiary volumes
start with the device number indicated by
"First subsidiary vol number." The number of
subsidiary volumes is determined by "Max
number of subsidiary vols. " The highest
device number allowed for subsidiary volumes,
standard storage devices, or user-defined
serial volumes (described below) is 127. (The
device numbers 128 and above are reserved for
user-defined deVices, as described under "The
Extended SBIOS" in the Adaptable System
Installation Manual.)

WARNING: "First subsidiary vol number" must
be greater than 8 to allow space for all of
the standard system units.

HAS 8510A

Should always be false.

HAS BYTE FLIPPED MACHINE

This may be TRUE or FALSE. On PDP-lI, LSI-lI,
8080, Z-80, 6502, 8086, 8088, and HP86/87
processors this bit is FALSE. On the 68000,
9900, and 6809, it is TRUE.

5-70

Utility Programs

HAS CLOCK.

This value may be TRUE or FALSE. If your
hardware has a line frequency (60 Hz) clock
module, such as the DEC KW11, setting this bit
TRUE allows the system to optimize disk
directory updates. It also allows you to use
the TIME intrinsic. If your hardware doesn't
have a clock, this must be FALSE. (If you are
using the adaptable system, you must write
your own clock-handler; until it is installed,
this item must be FALSE.)

HAS EXTENDED MEMORY

When extended memory isn't used, the code pool
resides hetween the stack and the heap. If
the code pool is removed from that memory
space and placed in a different area
altogether, then' set HAS EXTENDED MEMORY to
TRUE; otherwise, set it to FALSE. (An example
of extended memory is a 128K byte machine
where the stack and heap reside within one 64K
area, and the code pool resides within the
other 64K area.)

HAS LOWER CASE

This may be TRUE or FALSE. It should
if you do have lowercase and want to
If you seem stuck in uppercase, even
bi t is TRUE, remember there is
alpha-lock: see KEY TO ALPHA LOCK.

5-71

be TRUE
use it.
if this
a soft

Utili ty Programs

HAS RANDOM CURSOR ADDRESSING

This value may be TRUE or FALSE. If your
te~nal isn't a CRT, this should be FALSE.

HAS SLOW TERMINAL

This value may be TRUE or FALSE. When this
bi t is THUE, the system's rTl€nus and prompts
are abbreviated. You should leave this set to
FALSE, unless your terminal runs at 600 baud
or slower.

HAS SPOOLING

Set this to TRUE, if the PRINT
be used. If this field
SYSTEM.MISCINFO and SF(X)LOPS
LIBRARYed into SYSTEM.PASCAL,
won't boot.

HAS WORD ORIENTED MACHINE

SF(X)LER is to
is true in
hasn't been
the p-System

May be TRUE or FALSE. If your processor uses
byte addresses for memory references, this
should be FALSE.

5-72

Utility Programs

KEYBOARD INPUT MASK

Characters that are recieved from the keyboard
will be logically ANDed with this value. For
the typical ASCII keyboard, set this value to
7F hexadecimal (which throws away the eighth
bit). For some keybords, which generate eight
bit characters, use FF hexadecimal. Default:
ASCII DEL.

KEY FOR BREAK

When this key is pressed while a program is
running, the program terminates irrmediately
wi th a run-time error. Recorrrnendation: a key
that is difficult to hit accidentally.
Default: ASCII NUL.

KEY FOR FLUSH

This key may be pressed while the system is
sending output to the console. The first time
it is pressed, output is no longer displayed
and will be ignored ("flushed") until FLUSH is
pressed again. This can be done any number of
times; FLUSH functions as a toggle. Note that
processing continues while the output is
ignored, so using FWSH causes output to be
lost. Default: ASCII ACK.

5-73

Utility Programs

KEY FOR STOP

This key may be pressed while the system is
wri ting to ffiNSOLE:. Like FLUSH, it is a
toggle. Pressing it once causes output and
processing to stop; pressing it again causes
output and processing to resume; and so on.
No output is lost; STOP is useful for slowing
down a program so the output can be read while
it is being sent to the terminal. Default:
ASCII DC3.

KEY TO ALPHA LOCK

When sent to the screen, this character locks
the keyboard in uppercase (alpha mode). It is
usually a key on the keyboard as well.
Default : ASCI I OC2.

KEY TO DELETE CHARACTER

This deletes the character where the cursor is
and moves the cursor one character to the
left. Default: ASCII ES.

KEY TO DELETE LINE

This key deletes the line that the cursor is
currently on. Default: ASCII DEL.

5-74

Utility Programs

KEY TO END FILE

This key sets the intrinsic Boolean function
EDF to TRUE when pressed while reading from
the system input files (either KEYOOARD or
INPUT, which come from device CONSOLE:) •
Default: ASCII ETX.

KEY TO MOVE CURSOR DOWN
KEY TO MOVE CURSOR LEFT
KEY TO MOVE CURSOR RIGHT
KEY TO MOVE CURSOR UP

These keys are recognized by the
Screen-Qriented Editor and are used when
edi ting a document to move the cursor about
the screen. I f your keyboard has a vector
pad, you should use those keys for these
functions. If you have no vector pad, you
might select four keys in the same pattern
(for example, '.', 'K', ';', and '0', in that
order) and use them as your vector keys,
prefixing them or using the corresponding
ASCII control codes.

5-75

Utili ty Programs

LEAD IN FROM KEYBOARD

On some terminals, pressing certain keys
generates a two-character sequence. The first
character in these cases must always be a
prefix and must be the same for all such
sequences. This data i tern specifies that
prefix. Note that this character is only
accepted as a lead in for characters where you
have set PREFIX~)[<item name>] to TRUE. (See
MOVE CURSOR HOME for an example of this.)

LEAD IN TO SCREEN

Some terminals require a two-character
sequence to activate certain functions. If
the first character in all these sequences is
the same, this data item can specify this
prefiX. This item is similar to the one
above. The prefix is generated only as a lead
in for characters where you have set
PREFIXill[<item name>] to TRUE. An example of
this is in MOVE CURSOR HOME.

5-76

Utility Programs

MAX NUMBER OF SUBSIDIARY VOLS

This field indicates the maximum number of
subsidiary volumes that may be mounted at
once. Because the p-System Unit Table expands
a few bytes with each additional subsidiary
volume entry, set this number to the smallest
convenient value. (Also see FIRST SUBSIDIARY
VOL NUMBER.)

The highest subsidiary volume will be "First
subsidiary vol number" + "Max number of
subsidiary vols" -1. This expression must be
less than or equal to 127, which is the
highest device number allowed for system
units.

MAX NUMBER OF USER SERIAL VOLS

This entry is the total number of user-defined
serial volumes desired. The first device
number assigned to a user-defined serial
volume is "First subsidiary vol number" + "Max
number of subsidiary vols."

For example, if "First subsidiary vol number"
is 12 (#12:) and "Max number of subsidiary
vols" is 4, then the first user-defined serial
volume #16:. If this entry, "Max number of
user serial vols", is 2, then the user-defined
serial volumes are #16: and #17:.

5-77

Utility Programs

If "Max number of subsidiary vols" is 0, then
the first user-defined serial volume is equal
to "First subsidiary vol number". In this
case, "Max number of user serial vols" +
"First subsidiary vol number" -1 yields the
highest-numbered user-defined serial volume.

"Max
The

volume

NOTE: The largest value allowed for
number of user serial vols" is 16.
highest-numbered user-defined serial
must be less than or equal to 127.

NOTE: User-defined serial volumes differ from
user-defined devices (described under "The
Extended S8IOS" in the Adaptable System
Installation Manual). User-defined serial
volumes are part of the system devices. These
devices are allocated device numbers ° through
127. Device numbers 128 through 255 are
allocated for true user-defined devices.
User-defined devices can only be accessed
using unit I/O, whereas the standard p-System
file I/O capabilities can be used with system
devices such as user-defined serial volumes.

MOVE CURSOR HOME

When sent to the terminal, this key moves the
cursor to the upper left of the screen
(position (0,0)). If your terminal doesn't
have a character that does this, this data
item must be set to CARRIAGE RETURN; then, you
won't be able to use the Screen-Oriented
Editor.

5-78

Utility Programs

MOVE CURSOR RIGHT

When sent to the terminal, this moves the
cursor nondestructively one space to the
right. If your terminal doesn't have this
function, you won I t be able to use the
Screen-Oriented Editor.

MOVE CURSOR UP

When sent to the terminal, this moves the
cursor up one line. If your terminal doesn't
have this function, you won't be able to use
the Screen-Qriented Editor.

NONPRINTING CHARACTER

This character is displayed on the screen when
a nonprinting character is entered or sent to
the terminal while using the Screen-Oriented
Editor.

PREFIXED[<item name>]

If you set this to TRUE, the system recognizes
that a two-character sequence must be
generated by a key or sent to the screen for
<item name>. See the explanations for LEAD IN
FROM KEYBOARD and LEAD IN TO SCREEN. Note
that one of these items is
PREFIX[DELETE CHARACTER]. This refers to
backspace; you can think of it as
PREFIX[BACKSPACE].

5-79

Utility Programs

PRINTABLE CHARACTERS

This entry is used to determine which
character codes will be echoed to the console.
Any code, from 0 to 255, may be defined as an
echoable code.

SETUP requires input in the form of a list of
decimal values separated by commas or double
periods. The values separated by coomas
correspond to the ASCII characters that will
be echoed to the console. The double periods
indicate that all values between the two
indicated numbers are included; for example,
32 through 126 (32 •• 126) includes the values
32, 126, and all values between them. The
default is:

13, 32 •• 126

(Carriage return is 13, and 32 through 126 are
the standard printable characters). The value
13 must always be present.

SCREEN HEIGHT

Starting from 1, this is the number of lines
in your display screen. If you are using a
hard copy terminal, set this to O.

SCREEN WIDTH

5-80

Utility Programs

Starting from 1, this is the number of
characters in one line on your display.

SIDIIKNT ALIGNMENT

For ease of implementation, some systems
require a code segment to be aligned to a
certain address. For example, on 8086 based
systems each code segment's starting address
must be an integral multiple of 16 (that is,
0, 16, 32, and so on). Therefore, the segment
alignment is 16. Most systems require no
segment alignment and a value of 0 or 1
indicates this.

The processor segment alignments are as
follows:

Non-extended Extended
Memory Memory

Z80 0 N/A
8080 0 N/A
8086 0 16
9900 0 0
6502 0 N/A
6809 0 N/A
68000 0 0
HP-87 0 0
PDP-11tm 0 64

5-81

Utility Programs

STUDENT

On all systems, this should be FALSE.

VERTICAL MOVE DELAY

This may be a decimal integer from 0 to 10.
Many terminals require a delay after vertical
cursor movements. This delay allows the
movement to be completed before another
character is sent. This data item specifies
the number of nulls the system sends to the
terminal after every CARRIAGE RETURN, ERASE TO
END OF LINE, ERASE TO END OF SCREEN, CLEAR
SCREEN, and MOVE CURSOR UP.

5-82

Utility Programs

SUDID8.ry of Data I terns

All the fields which SETUP modifies are:

BACKSPACE
CODE POOL BASE[FIRST WORD]
CODE POOL BASE[SOCOND WORD]
CODE lXX)L SIZE
EDITOR ACCEPT KEY
EDITOR ESCAPE KEY
EDITOR EXCHAl'KJE-DELETE KEY
EDITOR EXCHANGE-INSERT KEY
ERASE LINE
ERASE SCREEN
ERASE TO END OF LINE
ERASE TO END OF SCREEN
FIRST SUBSIDIARY VOL NUMBER
HAS 8510A
HAS BYTE FLIPPED MACHINE
HAS CLOCK
HAS EXTENDED MaDRY
HAS LOWER CASE
HAS RANJX)M CURSOR ADDRESSIM3
HAS SLOW TERMINAL
HAS SPOOLING
HAS WORD ORI ENTED MACHINE
KEYOOARD INPUT MASK
KEY FDR BREAK
KEY FDR FLUSH
KEY FDR STOP
KEY TO ALPHA LOCK
KEY TO DELETE CHARACTER
KEY TO DELETE LINE
KEY TO END FILE
KEY TO MOVE CURSOR OOWN
KEY TO MOVE CURSOR LEFT
KEY TO MOVE CURSOR RIGHT
KEY TO MOVE CURSOR UP

5-83

Utility Programs

LEAD IN FROM KEYBOARD
LEAD IN TO SCREEN
MAX NUMBER OF SUBSIDIARY VOLS
MAX NUMBER OF USER SERIAL VOLS
MOVE CURSOR HOME
MOVE CURSOR RIGHT
MOVE CURSOR UP
NONPRINTING CHARAcrER,
PREFIXED[DELETE CHARAcrER]
PREFIXED[EDITOR ACCEPT KEY]
PREFIXED[EDITOR ESCAPE KEY]
PREFIXED[EDITOR EXCHANGE-DELETE KEY]
PREFIXED(EDITOR EXCHANGE-INSERT KEY]
PREFIXED[ERASE LINE]
PREFIXED[ERASE SCREEN]
PREFIXED[ERASE TO END OF LINE]
PREFIXED(ERASE TO END OF SCREEN]
PREFIXED[KEY TO DELETE CHARAcrER]
PREFIXED[KEY TO DELETE LINE]
PREFIXED(KEY TO MOVE CURSOR OOWN]
PREFIXED[KEY TO MOVE CURSOR LEFT]
PREFIXED[KEY TO MOVE CURSOR RIGHT]
PREFIXED[KEY TO MOVE CURSOR UP]
PREFIXED(MOVE CURSOR HOME]
PREFIXED[MOVE CURSOR RIGHT]
PREFIXED[MOVE CURSOR UP]
PREFIXED[NONPRINTING CHARAcrER]
PRINTABLE CHARAcrERS
SCREEN HEIGHT
SCREEN WIDTH
SEGMENT ALIGNMENT
STUDENT
VERTICAL MOVE DELAY

5-84

Utility Programs

Sample SETUP Session

The following is a sample of part of a SErUP
session. The data is being changed from the
system defaults to the specifications for a
Sorce terminal. All underlined text like this
you enter, and all text enclosed in curly
brackets {like this} is coomentary. Angle
brackets <these> are used to enclose the names
of nonprinting characters {like <return>}.
All else is SErUP's output to the terminal.

5-85

Utility Programs

{To beg-in, you must eXecute SETUP}
XSETUP<r~turn>

INITIALIZING••-••••••••••••• : •••••••••••

H) ·';5. indeed th~ S'oroc's back~p.a_ce;·"

iil

iil

H
·CONTROL -ASCII

as
.~y ,.N,!)

SETU?: C(HANGE T(EACH H(ELP Q(UIT (01)
-{H(ELP tells you about" the other ac-tivities, and HEACH

describes the use of SETUP. -Now is the most profitable
time to.use these activities.
Suppose you -have read H(ELP and HEACH, and decide to
change data items by going through the menu. You must
press ·c· for C(HANGE.}

C
_{Note: these single-character activities don't -echo.}
CHANGE: S(INGLE) P(ROMPTEO) R(AOIX)

H(ELP) Q(UIT>
{H(ELP) describes the activities on this particular line,

R(AOIX) allows you to change the base of the numbers
you enter, and Q(UIT> _returns you to the SETUP: menu.
What you want to do now is gO _through the prompted menu.}

P - - -

FIELD- -NAME = BACKSPA-cE
OCTAL DECIMAL - HEXADECIMAL

10 8 -8-
WANT TO CHANGE THIS VALUE?
<return> _
WANT TO CHANGE THis VALUE? ('I ,N,!)-
(<r.eturn?' or <space> wi II cause "t"hi 5 menu to be- repeated •.
'!' causes. an. escape" to the" CHAN~E: menu.
Sin-ce control-H .<
you vant- 'te?' go on.)

N
FIELD NAME-= EDiTOR-AcCEPT KEY

OCTAL DEC IMA"L HEXADEC-IflIAL ASCII CONTROL
o 0- _0- NUL

WANT TO CHANG!; THIS VALUE? - (Y,N~!)
'I
NEW VALUE: <home>
{When <home>_ e>r any 6th-eo nonprin-ting keY
;s .press,ed, I?' is displayed ...}

-OCTAL DECIMAL _HEXADECIMAL ASCII CONTROL-
3 3 3 _ETX.

WANT TO CHANGE THIS -VAlliE? (Y ,N,!) _
_N

FIELD NAME = EDITOR ESCAPE KEY
OCTAL DEC IMAL HEXADEC rMAL AS-CU - CONTROL

0_ 0 o NUL
WANT -TO CHANGE THIS VALUE _('I,N_,!) _-_
y
:NEW VALUE: <return>

{Any_~nexpected input- here causes the

relevant section of HEACH -to be ·output,

5-86

followed by this:}
C(ONTINUE>
{All characters-'are ignored except 'e', and

then the menu is repeated.}
C
NEW VALUE: <rubout> <Again, a '1' is echoed.}
OCTAL DECIMALliEXADECIIIAL ASCII

177 -'27 7F DEL
WANT TO CHANGE THIS VALUE? (Y,N,!l
{(Note that there is no corresponding control ke.y.)

DEL ; s not the key you rleant, so you must
change it again.}

Y
NEW VALUE: <esc> .{? ;g ·echoed.}

OCTAL DEC IIIAL HEXADECIIIAL ASC II CONTROL
33 27 18 ESC

WANT TO CHANGE THIS VALUE? (Y ,N,!)
N .
(This is what it shou·ld be.)
{The menu continues in this' wa~ for th~ rest of

the data items. Suppose you have gone ahead-and.
answe_red all of the questfons accord-ing to the
Soroe specifications; after the last ,data item,
you again get the menu:)

CHANGE:" S <INGLE)· P (ROIIPTED)· R(AD IX)
H(ELP) Q<uIn -

{You realize that you left the pref-ix. for
ERASE LINE at FALSE, when it should be
TRUE. You want to ·change just this one

. data item.}
S {for S <INGLE»
NAIIE OF FIELD: PREFIXED [ERASE]
DIDN;T FIND PREFIXED [ER~{Oops}
NAIIE Of FIELD: PREFIXED [ERASE LINE]
fIELD NAIIE = PREFIXED [ERASE LI~

CURRENT VALUE IS FALSE
WANT TO CHANGE THIS VALUE? (Y ,N,!)
Y
NEW VALUE: TRUE {T would also work.}

CURRENT VALTIE"IS TRUE_
WANT TO C·HANGE THlS VALUE? (Y ,N,!l
N
CHANGE:, S<INGLE> P (ROIIPTED) R (AD IX) .

H(ELP) Q<uIT>
Q

SETUP: C(HANGE T<EACH H(ELP Q<uIT [D2]
Q {Y-ou're through changing -dat"a now.}
QUIT: D<ISK) OR II(EI'IORY) _UPDATE,

_ R(ETURN) H(ELP~ .·E-(XIT)
{You want to do a disk update to create

NEW.IIISCINFO on your· disk for future use,}
D . . -

QUIT: D<I.SK) OR II(EIIORY) UPDATE,
R(ETURfl) H(ELP) E(XIn

E
{And now you're done'-· The. Command menu

wi II appear.}-
l;n~ count ~rror, count=.156

5-87

Utility Programs

Utility Programs

Sample Terminal Setups

Here is a list of SYSTEM.MISCINFO data items
followed by some sample values for four
popular terminals. Some items in the SETUP
menu haven't been included; these are data
i terns that refer to your processor
configuration, not your terminal.

These examples represent what we consider
reasonable layouts for a few different
keyboards, but we don 't guarantee that they
work for your particular hardware or match
your individual taste.

5-88

Utili ty Programs

Ter~i.nals: LSI HAZEL TINE SOROC HEATH, ADDS
ADM-3A 1500/1510 IQ120 H19 Viewpoint

3A plus
Oat'; ~t.ems :
BACKSPACE left-arrow backspace ctrl-H ctr l-H 'ctrl-H
EDITOR 'ACCEPT KEY ctrl-C ctrl-C home ctrl-C ctrl-C
EDITOR ESCAPE KEY esc esc esc ctrl-[.esc
ERASE LINE NUL, NUL NUL l NUL
ERASE ,SCREEN ct r l-Z ctrl':'\ '.' E '.'
'ERASE TO END OF LINE NUL ctrl-O t K T
ERASE TO 'END OF, SCRN NUL ctrl-X Y J Y
HAS LOWER CASE TRUE TRUE TRUE TRUE TRUE
HAS'RAND CURS ADDR TRUE TRU.E TRUE TRUE TRUE
HAS SLOW TERMINAL FALSE FALSE FALSE FALSE FALSE
KEY FOR BREAK ctrl-B 11- break ** 'break break ctr l-B
KEY FOR FLUSH c,trl-F ctrl-F ctrl-F ct'rl-F ct r l-F
KEY FOR STOP tt r l-S ctrl-S ct r l-S ctrl-S ct r l-S
KEY TO ALPHA LOCK 'ctrl-R NUL ct r l-R ct rl-R ct rl-R
KEY TO DELETE CHAR ctrl-H backspace l-arrow ctr,l-H ctrl-H
KEY TO D,ELETE LINE rubout sh i ft-DEL rubo~t DEL DEL
KEY TO END' FILE, ctrl-C ctrl-C ct r l-C ctrt..:C ctrl-C
KEY TO MV CURS, ,DOWN ctrl-J c'tr l-K d-arrow B ct r'l-J
KEY TO MV CURS LEFT ctrl-H backspace l-arrow ,D etr l-H
KEY TO ,MV CURSRGIH ctrl-L cf rl-P r-arrow C' ctrl-L
KEY TO,MV CURS UP ctrl-K ctrl-L 'u-arrow A ct r l ~K
LEAD IN FROI'I KEYBD NUL NUL NUL ~s-c NUL'
LEAD IN TO SCREEN NUL esc e.sc esc
MOVE, CURSOR HOME ct r l- 'ctrl-R ct r l- H ctrt-
MOVE CURSOR R.IGHT ctrl-L ctrl-P r-arrow C ct r l-L
MOVE CURSOR UP , ,ctrl-K. c t r l-L u-arrow A ctr-l-K'
NONPRINTING CHAR "?,' '? • '1 I '1 I' '1 1

PREF ,[DELETE CHAR] FALSE FALSE FALSE FALSE FALSE
PREF [ED 'AC,CEPT KEY] FALSE FALSE FALSE FALSE FALSE
PREf' [ED ESCAP,E KEY] FALSE FALSE FALSE TRUE FALSE
PREF' [ERASE LIN£] FALSE FALSE FALSE TRUE FALSE
PREF [ERASE SCREEN] FALSE TRUE TRUE TRUE FALSE
PREF [ERASE TO EOLN] FALSE TiluE TRUE TRUE TRUE

',PREF [ERSE TO EOSCN] FALSE TRUE TRUE TRUE TRUE
PREF [KEY DEL, CHAR] FALSE FALSE FALSE fALSE FALSE
PREF. [K.EY DEL LINE] 'fALSE FALSE fALSE FALSE FALSE
PREf [KEY MV' CRS DN] fALSE FALSE ,FALSE TRUE F'ALSE
PREf [KEY MV CRS LTJ FALSE FALSE FALSE TRU£ FALSE
PREF [KEY MV CRS RT] FALSE' FALSE fALSE TRUF FALSE
PREF '[KEY MV 'CRS' UP) FALSE FALSE FALSE TRUE FALSE
PREF[MOVECRS HOME) FALSE ,TRUE FALSE 'TRUE FALS'E
PREF' [MOVE C'URS, RTJ FALSE " FALSE FALSE TRUE FALSE
PRH [MOVE CURS UP) FALSE FALS'E FALSE, TRUE FALSE
PREF[NONPilINT CHAR] FALSE FALSE' F'ALSE' FALSE ' FALSE
SCREEN HEIGH,T' 24 24 24 24 24

SCR'EEN ,WIDTH 110 80 80 80 80

STUD,ENT' FALSE FALSE FALSF. fALSE FALSE

VERTICAL MOVE DELAY ,5 5 10 10 0,. The, BREAK key' 'ca~ also b,e .used', but" ;.t i s pe.r.i lou:;ly .cl.o~·e.
fa RETURN'.,

on' HazeLtfn.e~1o** Breal(is· .~lso control-@

5-89

Utility Programs

Terminals: DEC IBM DATA-
VT-52 PC MEDIA

Data Items:
BACKSPACE backspace ctrl-H backspace
EDITOR ACCEPT KEY c t r l-C ctrl-C ct r l-C
EDITOR ESCAPE KEY esc esc esc
ERASE LINE ctrl-i) L ctrl-i)
ERASE SCREEN ctrl-il E ctrl-L
ERASE TO END OF LINE K K ctrl-)
ERASE TO END OF SCRN J J ctrl-K
HAS LOWER CASE TRUE TRUE TRUE
HAS .RAND CURS AD DR TRUE TRUE TRUE
HAS SLOW TERMINAL FALSE FALSE FALSE
KEY FOR BREAK ctr l-i) ctrl- ctr l-i)
KEY FOR FLUSH ctrl-F ctrl-"F ctrl-F
KEY FOR STOP ct r l-S ct r l-S ctrl-S
KEY TO ALPHA LOCK ctr.l-R ctrl-R ctrl-R
KEY TO DELETE CHAR ctrl-H ctrl-H backspace
KEY TO DELETE LINE del del del
KEY TO END FILE ctrl-C ct r l-C ct r l-C
KEY TO MV CURS DOWN B B d-arrow
KEY TO MV CURS LEFT D D l-arrow
KEY TO MV CURS RGHT C C r-arrow
KEY TO MV CURS UP A A u-arrow
LEAD IN FROM KEYBD esc ctrl-Q ctrl-i)
LEAD IN TO SCREEN esc esc ctrl-i)
MOVE CURSOR HOME H H ctrl-Y
MOVE CURSOR RIGHT C C ctrl-\
MOVE CURSOR UP A A ct rl--
NONPR INTING CHAR '? I .? • '1 '
PREF [DELETE CHAR) FALSE FALSE FALSE
PREF [ED ACCEPT KEY) FALSE FALSE FALSE
PREF [ED ESCAPE KEY) TRUE FALSE FALSE
PREF [ERASE LINE) FALSE TRUE FALSE
PREF [ERASE SCREEN) FALSE TRUE FALSE
PR EF [E RAS E TO EOLN) TRUE TRUE FALSE
PREF [ERSE TO EOSCN) TRUE TRUE FALSE
PREF [KEY DEL CHAR) FALSE FALSE FALSE
PREF [KE Y DEL LINE) FALSE FALSE FALSE
PREF [KEY MV CRS DN) TRUE TRUE FALSE
PREF [KEY MV CRS LTJ TRUE TRUE FALSE
PREF [KEY MV CRS RTJ TRUE TRUE FALSE
PREF [KEY MV CRS UP) TRUE TRUE FALSE
PREF [MOVE CRS HOME) TRUE TRUE FALSE
PREF [MOVE CURS RTJ TRUE TRUE FALSE
PREF [MOVE CURS UP) TRUE TRUE FALSE
PREF [NONPRINT CHAR) FALSE FALSE FALSE
SCREEN HEIGHT 24 25 24
SCREEN WIDTH 80 80 80

STUDENT FALSE FALSE FALSE

VERTICAL MOVE DELAY 0 0 0

5-90

Utility Programs

DISKSIZE

The DISKSIZE utility enables you to alter the
storage capacity of a disk withou t having to
change the files on it. For example, you could
change a disk's size from 640 blocks to 320
blocks.

When you use DISKSIZE to TM..ke a disk smaller,
you should be sure that there is enough unused
space after the last file to absorb the decrease
in storage capacity • I f there isn't, the
resul ting directory will be internally
inconsistant since disk space is being used
which isn't supposed to be available. (Files
aren't removed by DISKSIZE.) If you attempt to
use DISKSIZE to make a disk larger than its
maximum storage capacity, DISKSIZE will inform
you that this can't be done.

When you X(ecute DISKSIZE, these prompts appear:

.' . . ".

Change 'direct'ory size.·~n what·uni~ ~~·,~,9:.22) 1"' .
. tu~rent'Cize is xxx bl~cks ".,' ..
~hat ;'s ne.w· d.;r-ectory ~; ze' .in -512· b~te blocks ,1...

In response to the first prompt,
enter the device number of the
altered. (Don't include the # sign
in the device number.)

5-91

you should
disk to be
or the colon

Utility Programs

The second line indicates the size of the disk
according to the current directory. The "xxx"
is actually a number such as 320.

The last prompt asks you to enter the new size
for the disk. You should enter the desired
number followed by <return>. If the number you
enter is larger than the maximum capacity (or
smaller than the minimum capacity) of the disk,
you are prompted:

No such block .
""Wh"at is new dire·c;t.ory size in 512.byte blocks?

This means that you entered an invalid number
and should try again.

5-92

Utility Programs

COPYDUPDIR

OOPYDUPDIR copies the duplicate directory of a
disk into the primary directory location. In
certain situations, a duplicate directory may
help rescue directory information tha t is
garbled or lost.

The Z(ero coomand of the filer can create a
duplicate directory, as can the MARKDUPDIR
utili ty. Once a duplicate directory has been
created, the filer maintains it along with the
primary directory.

To use this utility, X(ecute 'OOPYDUPDIR'. The
system then displays a prompt asking for the
drive in which the copy is to take place. If
the disk doesn I t currently contain a duplicate
directory, OOPYDUPDIR displays a prompt stating
that. If the duplicate directory is found, then
OOPYDUPDIR displays a prompt asking if you want
to destroy the directory in blocks 2 through 5.
Press 'y' to execute the copy; any other
character aborts the program.

5-93

Utility Programs

MARlIDUPDIR

MARKDUPDIR creates a duplicate directory on a
disk that doesn't currently contain one.

Be sure that blocks 6 through 9 are free for
use. If they aren't, use T(ransfer or a
backward K(runch to free them. To determine if
these blocks are available, do an extended
listing in the filer and check to see where the
first file starts. If the first file, or unused
area star ts a t block 6, then the disk doesn't
have a duplcate directory. However, if the
first file or unused area starts at block 10,
then the disk already has a duplicate directory.

MARKDUPIR Example

SYSTEM. PASCAL

OR
<unused>
SYSTEM. PASCAL

106 1-Jan-83 6 Codefile

4 6
106 1-Jan-83 10 Codefile

Both of the preceding cases indicate disks that
have no duplicate directory. The following
listing is a directory of a properly marked
disk:

SYSTEM. PASCAL 106 1-Jan-!l3 10 Codefile

5-94

Utility Programs

To create a duplicate directory, X(ecute
'MARKDUPDIR'. The system will display a prompt
asking which drive contains the disk to be
marked (#4 or #5). MARKDUPDIR checks to see if
blocks 6 through 9 are free. I f they aren't,
the system displays a prompt asking if you are
sure they are free. Press 'Y' to continue; any
other character will abort the program. Be sure
that the space is free before marking it as a
duplicate directory; otherwise, you'll lose file
information.

5-95

Utili ty Programs

RECOVER

The RECOVER utility attempts to recreate the
directory of a disk whose directory has
accidentally been destroyed.

When you X(ecute I RECOVER', it prompts you for
the drive number of the disk you wish to
recover:

Recover CV'ersionJ'
USER'S DISK IN ·DRIVE # <0 exits)·:

You should enter the number, such as '5',
without the pound sign or colon, followed by
<return> • Next, you are prompted for the new
name to be given to the recovered volume:

USER'S VOLUME 10:

You should enter a correct volume name.
Finally, RECOVER prompts:

~ow many bloCk,S ·o~ disk?

Here you should indicate the total number of
blocks on the volume being recovered.

5-96

Utility Programs

RECOVER reads each entry in the disk's directory
and checks it for validity. Entries with errors
are rerroved. Valid entries are saved, and
RECOVER displays: 'ENTRY .NAME found' (or
something similar).

When all the directory entries have been
checked, saved. or discarded, RECOVER displays
the following prompt:

',. -'.' ~ .

-.-.,"

If you press 'N', RECOVER displays the following
prompt:

• >-GO AHEAD AND UPDATE> DIRECTORY" (Y IN)?

If you press 'N I, REOOVER finishes executing
without doing anything.

I f you press 'Y', RECOVER saves
reconstructed directory and display
following prompt:

Then RECOVER terminates.

5-97

the
the

Utility Programs

If you press 'Y' in response to the 'Are there
still IMPORTANT files missing?' prompt, RECOVER
searches those areas of the disk still not
accounted for by the (partially) reconstructed
directory. Text files and code files are
detected, and appropriate directory entries are
created for them. If REXnVER can't detennine
the original name of a file it has found, it
creates a directory entry for DUMMY##. TEXT or
DUMMY##.OODE (where the ## are two unique
digits). If a code file has a PROGRAM name, it
is given that name. If this would create a
duplicate entry in the directory, digits are
used; for example, REXnVER first restores
SEARCH.CODE and, then, SEARCHOO.CODE.

RECOVER can't detect data files since their
forrmt isn't system-defined. To recover data
files, you must use the PATCH utility, described
in the Program Development Reference Manual.

If RECOVER restores a text file with an odd
number of blocks, this probably means that the
end of the text file was lost. Use the editor
to rmke sure this is the case.

You should use the linker to relink recovered
code files (if linking was originally
necessary) •

When RECOVER has finished its pass over the
entire disk, it displays the following prompt:

GO AHEAD AND UPDATE DIRECTORY (YIN)?

5-98

APPENDICES

APPENDIX A
EXECUTION ERRORS

o Fatal system error
1 Invalid index, value out of range
2 No segment, bad code file
3 Procedure not present at exi t time
4 Stack overflow
5 Integer overflow
6 Divide by zero
7 Invalid memory reference <bus timed out>
8 User break
9 Fatal system I/O error

10 User I/O error
11 Unimplemented instruction
12 Floating point math error
13 String too long
14 Halt, Break Point
15 Bad Block
16 Break Point
17 Incompatible Real Number Size
18 Set Too Large
19 Segment Too Large

All run-time errors cause the system to
I(nitialize itself; FATAL errors cause the
system to rebootstrap. Some FATAL errors leave
the system in an irreparable state, in which
case the user must rebootstrap.

A-3

APPENDIX B
I/O RESULTS

o No error
1 Bad Block. Parity error CCRe)
2 Bad Device Number
3 Illegal I/O request
4 Data-com timeout
5 Volume is no longer on-line
6 File is no longer in directory
7 Bad file name
8 No room, insufficient space on volume
9 No such volume on-line

10 No such file on volume
11 Duplicate directory entry
12 Not closed: attempt to open an open file
13 Not open: attempt to access a closed file
14 Bad forrmt: error in reading real or integer
15 Ring buffer overflow
16 Volume is write-protected
17 Illegal block number
18 Illegal buffer
19 Bad text file size

A-4

Device
Number

1
2
4
5
6
7
8
9 ••• 127

128 ••• 255

APPENDIX C
DEVICE NUMBERS

Volume
Name

OONSOLE:
SYSTERM:
<System disk '*'>
<other disk>
PRINTER:
REMIN:
REMOUT:
<additional disks,
subsidiary volumes,
or user-defined
serial devices>
<user-defined devices>

A-5

APPENDIX D
ASCII TABLE

o 000 00 NUL 32 040 20 5P 64 100 40 @ 96 140 60
1 001 01 SOH 33 041 21 65 101 41 A 97 141 61 a
2 002 02 STX 34 042 22 66 102 42 B 98 142 62 b
3 003 03 ETX 35 043 23 # 67 103 43 C 99 143 63 c
4 004 04 EOT 36 044 24 $ 78 104 44 D 100 144 64 d
5 005 05 ENQ 37 045 25 % 69 105 45 E 101 145 65 e
6 006 06 ACK 38 046 26 & 70 106 46 F 102 146 66 f
7 007 07 BEL 39 047 27 71 107 47 G 103 147 67 9
8 010 08 BS 40 050 28 72 110 48 H 104 150 68 h
9 011 09 HT 41 051 29 73 111 49 1 105 151 69

10 012 OA LF 42 052 2A * 74 112 4A J 106 152 6A
11 013 DB VT 43 053 2B + 75 113 4B K 107 153 6B
12 014 OC FF 44 054 2C 76 114 4C L 108 154 6c
13 015 OD CR 45 055 2D 77 115 40 M 109 155 60 m
14 016 DE SO 46 056 2E 78 116 4E N 110 156 6E n
15 017 OF 51 47 057 2F I 79 117 4F 0 111 157 6 F 0

16 020 10 OLE 48 060 30 0 80 120 50 P 112 160 70 p
17 021 11 OC1 49 061 31 1 81 121 51 Q 113 161 71 q
18 022 12 DC2 50 062 32 2 82 122 52 R 114 162 72 r
19 023 13 DO 51 063 33 3 83 123 53 5 115 163 73 s
20 024 14 OC4 52 064 34 4 84 124 54 T 116 164 74 t
21 025 15 NAK 53 065 35 5 85 125 55 U 117 165 75 u
22 026 16 SYN 54 066 36 6 86 126 56 V 118 166 76 v
23 027 17 ETB 55 067 37 7 87 127 57 W 119 167 77 w
24 030 18 CAN 56 070 38 8 89 130 58 X 120 170 78
25 031 19 EM 57 071 39 9 89 131 59 Y 121 171 79 y
26 032 1A SUB 58 072 3A 90 132 SA Z 122 172 7A z
27 033 1B E5 C 59 073 3B 91 133 58 [123 173 7B {

28 034 1C FS 60 074 3C < 9Z 134 5C \ 124 174 7C I
29 035 1D GS 61 075 3D 93 135 50] 125 175 70 }

30 036 1E R5 62 076 3E > 94 136 5E 126 176 7E
31 037 1F US 63 077 3F ? 95 137 SF 127 177 7F DEL

A-6

APPENDIX E
CONFIGURATION NOTES

This appendix briefly covers several topics
related to p-System configuration and possible
problems that you might encounter.

FLOATING POINT PACKAGES

The p-System may be configured to run wi th
two-word real numbers (32 bit precision),
four-word real numbers (64 bit precision), or no
floating point arithmetic at all. Programs
which use two-word precision can perform
floating point operations with 6 to 7 digits of
accuracy and a base 10 exponent with an absolute
value as large as 38 (approximately). Programs
using four-word precision can have up to 15 or
16 digits of precision and a base 10 exponent
with an absolute value as large as 308
(approximately). These values vary sanewhat
among processors.

The memory available to p-System programs
decreases as you go from no reals, to two-word
reals, to four-word reals. This results in
tradeoffs between floating point precision and
memory space availability that you should take
into consideration. Execution speed may also be
a factor since code may have to be swapped to
and from disk more often when there is less main
memory space available.

A-7

Appendix E

Application programs which use floating point
ari thmetic require a p-System configured with
the same real size that they use. If you
attempt to run a program which uses a different
real size from the p-System you are using, you
will receive a real size mismatch error
(execution error 17). If you attempt to run a
program which uses reals on a p-System
configured for no reals, you will receive an
unimplemented instruction error (execution error
11). (Programs that don't use real numbers will
run regardless of the floating point precision
of the p-System.)

When a Pascal program is compiled, the compiler
creates a code file which has the real size of
the PME being used. I f you want to crea te a
code file with a specific real size (which
doesn't necessarily correspond to the underlying
PME at compilation time), you can use the $R
compiler option (described in the Program
Development Reference Manual). For FORTRAN and
BASIC, there is a two-word and four-word version
of the compiler. You should choose the compiler
which produces the desired real number size.

The rest of this section outlines how to create
a system with the real size that you want. This
information may not apply to you, however, since
some p-System suppliers provide separate boot
disks which are already configured for the
different real sizes.

A-8

Appendix E

The operating system (SYSTEM. PASCAL) and the
p-machine emulator (usually called
SYSTEM.INTERP) both must be configured for a
particular real size. They should be configured
consistently with each other.

In order to create a new SYSTEM.PASCAL with real
numbers, you must use the LIBRARY utility
(described in Chapter 5). With this utility,
you should place the appropriate REAlDPS uni t
into the new SYSTEM. PASCAL. Whenever you use
the LIBRARY utility to create a SYSTEM. PASCAL ,
you must be sure tha t the segments KERNEL and
USERPROG remain in slots 0 and 15, respectively.
It is a g(X)d idea to first rrove REALOPS over to
a slot greater than 15. After that, move all of
SYSTEM.PASCAL over to the new file.

Here is a step-by-step process that you may
follow if you are unfamiliar with the Library
utility:

1. Make sure that you have a disk with enough
free space (apprOXimately 120 contiguous
blocks) to contain the new SYSTEM. PASCAL.
You should be sure that a SYSTEM.PASCAL
doesn't already exist on that disk. For this
discussion, that disk will be called
"NEW PAS:".

A-9

Appendix E

2. Locate the appropriate REALOPS code file (for
two-word or four-word reals). Place this
code file on NEW PAS: using the filer's
T(ransfer facility. For this discussion,
that file will be referred to as
"REALOPS •CODE" even though it actually has a
slightly different name (depending upon your
processor and real size).

3. Locate the disk which contains the LIBRARY
utility and place it in drive #5.

4. From the Corrmand menu, X(ecute #5: LIBRARY.

5. After LIBRARY's first prompt appears on the
screen, remove the disk from #5 and place
NEW PAS: in #5. Be sure that the system
disk is in #4.

6. Respond to LIBRARY's prompts like this:

Output f{le? NEW PAS:SYSTEM.PASCAL <-ret>
Input -file? _NEW PAS:llEALOPS.CODE <ret>
TYPE: 'T'- -
TYPE: '0 <space>- 21 -<space>
-TYPE: 'N'- - .
Input file? *SYSTEM.PASCAL <ret>
TYPE: 'E'
TYPE: 'Q'
TYPE: <ret>

7. NEW PAS: SYSTEM. PASCAL is now configured for
the-appropriate real size. Later, you should
T(ransfer this file to a boatable disk.

A-lO

Appendix E

After you have created the new SYSTEM.PASCAL,
the next step is to locate the PME which has the
real size that you want. You are provided with
two-word and four-word PMEs in addition to a PME
which doesn't support real numbers. You should
simply locate the appropriate PME code file for
now. Later you should use T(ransfer to move
that code file to the boot disk giving it the
name SYSTEM. INTERP. (On some systems, the PME
is given a different name, such as
SYSTEM.PDP-ll, SYSTEM. IBM, and so forth).

In order to create a bootable disk which
con tains the new SYSTEM. PASCAL and
SYSTEM. INTERP, you need to follow a process
which is machine-specific. Here is a general
outline of the necessary steps:

1. Format a new diskette.

This involves executing a disk formatter
program which should be described in your
machine-specific documentation. Not all
computers require that a diskette be
formatted, however.

2. Initialize the p-Systern directory.

You can do this using the
command (described ,in Chapter
formatter programs do this
however.

A-ll

filer's Z(ero
2) • Some disk
automatically,

Appendix E

3. Use T(ransfer to move the necessary system
files onto the new boot disk.

These files include SYSTEM.PASCAL,
SYSTEM. INTERP, and SYSTEM.MISCINFO. (Some
systems require additional files such as
SYSTEM. BIOS , SYSTEM.SBIOS, or SYSTEM.B<XYr.
If this is necessary on your computer, your
machine-specific documentation should explain
it.) Usually, SYSTEM.LIBRARY is kept on the
boot disk as well.

4. Place the bootstrap code on the new diskette.

The bootstrap code (which is only required on
bootable disks) resides in an area of the
disk which doesn't appear in the p-System
directory. In order to place this code on a
disk, you may need to use a special utility
program such as B<XYrER. Some disk formatter
programs automatically place the bootstrap on
the newly formatted diskette. A
volume-to-volume T(ransfer will copy the
bootstrap code on many computers. (If this
is the case with your computer, you can, if
you wish, just T(ransfer two blocks from a
bootable disk to a new disk. This will copy
the bootstrap code without disturbing the
directory or any files that may already
reside on the new disk.) The process of
placing a bootstrap on a new disk should be
described in your machine-specific
documentation.

A-12

Appendix E

THE DEBUGGER

The debugger is described in the Program
Development Reference Manual. It can be used as
an aid in debugging programs that you develop.
In order to use the debugger, you may have to
use the LIBRARY utility to place DEBUGGER.OODE
into SYSTEM.PASCAL. (See the "Floating Point
Packages" section, above, about using LIBRARY to
create a new SYSTEM.PASCAL.)

In order to use the symbolic debugging facility,
you may also have to place the symbolic
debugging unit (usually found in PDOO.SEED.OODE)
into SYSTEM.PASCAL using LIBRARY.

The reason that the debugger isn I t necessarily
placed in SYSTEM.PASCAL is that it requires
extra disk space and not all p-Systern users need
it.

You should be aware that if you select D(ebug
and there is no debugger in your system, the
p-System will halt. It is necessary to reboot
under these circumstances.

A-13

Appendix E

EXTENDED IIEMORY

Extended memory is a feature that allows the
p-System to run in environments of up to 128K
bytes (or more) of memory. This is accomplished
by dividing the p-System run-time environment
into two parts, each of which may occupy as much
as 64K bytes of memory. (On many computers, a
RAM disk can be used if you have more than
128K.)

The code pool is an area of memory where rrost
code segments are executed by the p-System.
This code includes the operating system, filer,
editor, and so on, as well as your programs. In
nonextended memory systems, the code pool shares
the same space wi th the rest of the p-System
(for example, the interpreter, RSP, BIOS, SBIOS,
and the p-System stack and heap). The code pool
resides between the stack and heap on
nonextended memory systems.

On extended memory systems, the code pool is
placed in a separate area of memory altogether.
Thus, the code pool may occupy an entire 64K
portion of RAM, and the rest of the p-System may
occupy another entire 64K area.

A major advantage of the extended memory feature
is the additional memory space available for
executable code to use. This means that larger
programs can be compiled and executed.

A-14

Appendix E

Also, the code segments on extended memory
systems may not need to be moved or swapped as
often as those on nonextended memory systems
thereby producing significant performance
improvements.

Because there is more space for the p-System
stack and heap to grow, the chances of a stack
overflow are reduced.

The SYSTEM.MISCINFO i tern "HAS EXTENDED MEMORY"
must be set to true if you are using extended
memory, and false, otherwise. If HAS EXTENDED
MEMORY isn't set correctly, the p-System won't
boot.

A-15

Appendix E

BOOTING PROBLEMS

If you are having problems bootstrapping the
p-Systern, there are several simple mistakes that
you may have made. This section briefly covers
them. An appendix to the Adaptable System
Installation Manual covers some more detailed
problems that you might encounter when
attempting to bootstrap an adaptable system•

• You may have forgotten to place a bootstrap
on the disk. The bootstrap code doesn't
appear in the directory because it resides in
an area outside of the main p-System volume
(usually in the first two blocks of the first
p-System track on the diskette). A bootstrap
is placed on the diskette in a
machine-specific manner. On some machines
the E(X)TER utility is used. On PDP-ll or
LSI-II machines, the ABOOTER utility is used.
(SOOTER and ABOOTER are described in the
Adaptable System Installation Manual.) Other
implementations use a special utility program
to copy a bootstrap onto a new diskette
(often in conjunction with disk formatting
and directory initialization).

• You may not have all the necessary system
files on the diskette. SYSTEM. PASCAL ,
SYSTEM. INTERP, and SYSTEM.MISCINFD all must
be on the system disk if it is to bootstrap
successfully. (Actually, SYSTEM. INTERP may
have another name on your particular system.)
Some systems require other files on the
system disk such as SYSTEM.BIOS,
SYSTEM. SBIOS, or SYSTEM. BOOT •

A-16

Appendix E

• Any of the
SYSTEM.MISCINFO
incorrectly:

following
may have

fields
been

in
set

roDE IXX>L BASE
roDE IXX>L SIZE
HAS EXTENDED MEMORY
HAS SIXX>LI~

SffiMENT ALIGNMENT

If any of these are incorrectly set, the system
may not boot. You should be sure that you keep
a backup copy of any system disk which does boot
successfully (since you need to boot the
p-System in order to alter SYSTEM.MISCINFO with
the SETUP utility).

A-17

Appendix E

SCREEN DISPLAY PROBLEMS

If your screen doesn't display information
correctly, there are two likely problems:

• SYSTEM.MISCINFO is incorrectly configured for
your console. In the section on SETUP (in
Chapter 5) several sample terminal setups are
given. Any of the SYSTEM.MISCINFO items
shown there may adversely affect the screen
display if they are set incorrectly for your
hardware. Note that the four SYSTEM.MISCINFO
i terns which begin with "ERASE" may be
especially troublesome if set incorrectly.
If these "ERASE" items are set to NUL (ASCII
0), then the p-System will function correctly
(but slower than if they are set to the
correct values for your hardware). However,
if both ERASE LINE and ERASE TO END OF LINE
are set to NUL, the display won't always be
correct.

• You have an incorrect GOTOXY unit wi thin
SYSTEM. PASCAL. GOTOXY moves the cursor to a
given "X" and "Y" coordinate on the screen.
Different terminals perform this in different
ways, so GOTOXY is terminal-dependent. See
the Adaptable System Installation Manual for
more information about GOTOXY.

A-18

APPENDIX F
osOS MEMBERSHIP APPLICATION

USUS is the society devoted to users of the
p-System and UCSD Pascal. Its goal is to
promote and influence the development of the
p-System and to help users learn more about
their systems.

USUS provides both formal and informal
opportuni ties for members to coomunicate with
and learn from each other. Its semiannual
national meetings and quarterly newsletters
feature technical presentations and discussions
as well as news about the p-System and its
derivatives. Electronic rmil bulletin boards
put you in touch with a member network that can
provide up-to-the-minute information, and
special interest groups zero in on specific
problem areas. USUS also supports a Software
Exchange Library from which members can obtain
software source code for a nominal reproduction
charge.

Developed to facilitate software portability,
the p-System is the most widely used,
machine-independent software system. Pascal was
its prinicpal language, but now other languages
such as Assembler, Pilot, Lisp, Modula-2,
FORTRAN and BASIC are available.

A-19

Appendix F

USUS stands for the UCSD p-System User's Society
and is pronounced "use us." It is nonprofit and
vendor independent.

If you're a p-System user, then USUS is for you.
USUS links you with a cornnuni ty of users who
share your interests. The following benefi ts
are available to USUS members:

SOFTWARE RXCHANGE LIBRARY
Tools, games, aides
Pascal source
Nominally priced

INFORMATIVE NATIONAL MEETINGS
Tutorials
Technical presentations
Special interest group meetings
Low-cost software library access
Hardware/software demonstrations
Query "major vendors"

HELP VIA ELECTRONIC CDMMUNICATIONS
CompuServe/MUSUS SrG

Bulletin board
Data bases
Software library

Te1email

USEFUL QUARTERLY NEWSLETTER
Technical articles and updates
SIG reports
Software vendor directory
Library catalog listings
Organizational news

ACTIVIST SPECIAL INTEREST GROUPS

A-20

TECHNICAL ARCHIVE

A-21

Appendix F

Appendix F

USUS RERBERSHIP APPLICATION

I am applying for $25 individual membership
$500 organ; zat ion membership
$ air mail service surcharge

Rates are for 12 months and cover surface mailing of the
newsLetter. <If you reside outside North America, air mail
service ;s availabLe for a surcharge. It is as follows:
$5.00 annually for those ;n the Caribbean, Central America
and Columbia and Venezuela; $10.00 annualLy for those ;n
South America, Europe, Turkey and North Africa; and $15.00
for aLL others.) Check or money order should be drawn on a
u.s. bank or U.S. office.

Name/Ti t le _

Affi l iat ion _

Address _

___________________,Country__

Phone () TWX/Telex _

Option: Do not print my phone number ;n usus rosters
Option: Print only my name and country in USUS rosters
Option: Do not release my name on mailing Lists

Computer System:

z-80 8080 PDP/LSI-l1
6809 -9900 -8086/8088

__MicroEngine -ISM PC

6502/Apple 6800
-Z8000 -68000
oti1er _

I am interested in the following Committees/Special Interest
Groups (SIGs):

Advanced System Editor SIG
-Apple SIG
-APpLication DeveLoper's SIG
-Communications SIG
-DEC SIG
-Fi le Access SIG
-Graphics SIG
--IBM Display Writer SIG
=IBM PC SIG

Meetings Committee
-NEC Advanced PC SIG
-PubLications Committee
-Sage SIG
-Software Exchange Library
-TechnicaL Issues Committee
-Texas Inst ruments SIG
-UCSD Pascal Compatibility SIG

Mail compLeted appLication with check or money order payable to
USUS and drawn on a U.s. bank or U.S. office, to Secretary,
USUS, P.O. 80x 1148, La Jolla, CA 92038, USA.

A-22

APPENDIX G
SOFTWARE PROBLEM REPORT

If you encounter any problems with the p-System
software, you should report them to SofTech
Microsystems or your p-System supplier using the
form in this appendix.

Reporting problems is a practice that benefits
everyone. Customers can learn that the problem
has already been solved, and what the fix is, or
that it was previously unknown, and that steps
will be taken to fix it in future versions.
Software authors benefit from the reports-not
everyone is familiar with all the problems which
users discover, nor all the applications for
which the p-System might be used. New uses lead
to new problems, which lead, in turn, to new
improvements.

Some users try to fix problems on their own,
without consulting their supplier. We ask that
you do report problems, even if you think they
may already be known (it isn't necessarily
true), or if you have found some private
solution (the solution you find may be something
your supplier would like to know).

A-23

Appendix G

We do ask tha t you be aware of the difference
between a software problem and a design
suggestion. Some people will inevitably object
to things that are intended features of the
sys tern. There is nothing wrong with that-the
design process itself involves debate and
compromise. If you have a suggestion, please
report it-only through feedback can the system
improve. The p-System documents attempt to
describe the p-System that is sent out. If
there are discrepancies between the documents
and your software, you should consider them to
be software (or documentation) problems. If the
manuals accurately describe the situation you
object to, then report your dissatisfaction, but
realize that the way the system operates is
already known.

When you report a problem, the more information
you provide, the better. These are the things
that should be specifically stated:

Environment:

1. What part of the system was running?

2. What version of p-System were you using?

3. What processor do you use?

A-24

Appendix G

Actions:

1. What were you trying to do?

2. What were you doing irrrnediately before the
problem appeared?

3. What exactly happened that was a problem? In
what order did the events related to the
problem occur?

Reactions:

1. Have you figured out a workaround?

2. How seriously does the problem affect your
work?

3. Have you had this problem before (even
transiently)?

If you possibly can, you might include a listing
wi th your report. Often a listing will be
needed to understand a problem.

Remember that debugging is the slowest part of
any software development, so don't expect
problems to disappear overnight. Nonetheless,
we fully appreciate the time you take to fi 11
out a useful report. Your concern for the
p-System is what keeps it maturing.

A-25

Appendix G

Details of who to contact for support assistance
should be included with the system you receive.
r f you receive your p-System through a supplier
other than SofTech Microsystems, then you should
always contact that supplier directly, unless
you have been specifically instructed otherwise.
You may contact SofTech Microsystems through
mail or by phone:

SofTech Microsystems, Inc.
16885 West Bernard Drive, Suite 300
San Diego, California 92127

(619) 451-1230

Please copy and fill out the appropriate
portions of the following three pages if you
wish to report a problem.

A-26

Appendix G

p-SYSTEM PROBLEM REPORT

Your name:
Address:
Date:
Phone:
Registration #:

Is a reply necessary? (YIN)

Impact (see below for definition):

none, mild, moderate, severe, lethal

Is this a report of a:

Software problem?
-- Document problem?
-- What document?

Page Number(s)
Design suggestion?

What portion of the p-System is affected?

______ Assembler (LSI-ll, 8080, Z80, Z8, 6800,
6502, 6809, 9900, 8086, 68000)

Compiler (Basic, Fortran, Pascal)--- Debugger--- Editor--- Filer--- Linker--- Long Integers--- Operating System---
______ Optional Product --:-:-....,.....--c-----;---

p-machine emulator (interpreter)
------ Utilities

Other -------------

A-27

Appendix G

What is its version number?
IV.12A)

(for example,

What processor do you use, and who manufactures
your system or terminal?

Please describe your problem. If possible, tell
us how we may duplicate it, and whether you have
found a workaround. If there was an error
message, please include the entire message.

Please send any listings or additional pages
which may help to analyze your problems.

A-28

Appendix G

Impact Definitions

1. None - Implies that the problem is harmless
or merely cosmetic in nature.

2. Mild - Implies actions that could confuse or
mislead the user, but don't create unexpected
results.

3. Moderate - Implies that unexpected results
do occur and the system may need to be
reinitialized or rebooted to recover.

4. Severe - Implies that a significant aIOOunt
of work is lost (for example, loss of one
disk file or the result of an editing
session).

5. J....ethal - Implies a system crash tha t may
purge all files from a disk.

A-29

APPENDIX H
p-SYSTEM GLOSSARY

Adaptable System A variation of the
p-System that allows you
to write the low-level
device interface code
which handles the
peripherals on a specific
computer. Once this
installation process is
done, the p-Systern can be
used on the new computer.

Anchor In the Screen-oriented
Editor, the position of
the cursor when D(elete is
invoked. When the cursor
is moved away from this
position, text disappears.
When the cursor is moved
toward this position, text
reappears.

Application Program A computer program that
meets specific needs of a
personal computer user.
Examples include a payroll
program or an oil well
supervision program.

Assembler A program tha t translates
human-readable assembly
language into machine
code.

A-30

Associate Time

Back File

Backup

Bad Block

Bad File

Appendix H

The time taken by the
Version IV operating
system to find and stitch
together the units
referenced by a program.
This stitching together
must occur before the
program can begin
execution.

A backup file for tex t
files that is identified
by the suffix .BACK; for
example, FILENAME. BACK.

The operation of making an
extra copy of important
information (usually on a
storage volume, in this
book). Also, the extra
copy that results from
this operation.

A 512-byte area on a
storage volume that is
somehow damaged. The
result is that information
can't be stored or
retrieved from there.

An irrmobile fi Ie used to
prevent the use of bad
blocks on a disk. A bad
file is iden tified by the
suffix •BAD; for example,
BAD.00120.BAD.

A-31

Appendix H

BASIC

BIOS

Bit

Block

Block-Structured
Device

A popular high-level
prograrrrning language that
is supported in the
p-System.

Basic Input/Output
Subsystem; that portion of
a p-machine emulator that
is specific to a
particular brand of
computer.

The minimum unit of
storage on most computers.
A bit is ei ther "on" or
"off."

The 512-byte uni t of
storage and retrieval that
is used with p-System
storage volumes.

Referred to in this book
as "Storage Volume."
Earlier p-System
documentation, and many
p-System prompts and error
messages still use
"block-structured device,"
or "blocked device," when
referring to storage
volumes.

A-32

Bootstrap

Boot Volume

Bug

Byte

Chaining

Client

Code File

Appendix H

The action of starting (or
that piece of code which
star ts) the p-System
running. You must
bootstrap the p-System
before you can do anything
with it.

See "System Disk."

A defect in a program that
causes it not to operate
as intended.

A uni t of computer
storage. Usually has the
capacity to store 3 bits
of information, or a
number in the range 0
through 255.

See "Program Chaining."

A program or uni t which
uses another unit.

A file that contains the
compiled or assembled
version of a program or
program segment. Usually
identified by the suffix
.CODE; for example,
FILENAME. CODE.

A-33

Appendix H

Code Segment

Corrmunication
Volume

Compilation Unit

('.A)mpiled Lis ting

Compiler

The smallest component of
a p-System program that
can be moved into (or
removed from) main memory
during the running of the
program.

A p-System I/O device that
doesn I t store information
on a long-term basis; for
example, the console or
the printer.

A uni t (as represented in
any of the three p-System
languages) or a program.
The smallest module that a
language allows to be
compiled separately.

The source lines of a
program, annotated by the
compiler with details of
the results of
compilation, including
sizes of statements, sizes
of data areas, and other
information.

A program that translates
the human-readable source
text of a program into
p-machine-executable
p-code.

A-34

Copy Buffer

Cursor

Data Entry Prompt

Data File

Declare

Appendix H

In the editor, a storage
area in which text can be
temporarily stored after
it has been deleted from
the work-space or while it
is being copied from one
place to another in the
work-space.

An indicator that
highlights a particular
point on a display screen.
In many situations,
characters typed at the
keyboard appear on the
screen at the location of
the cursor.

See "Prompt-"

A file that contains
arbi trary user data. No
particular internal
structure is assumed. No
special file name suffix
is required, but .DATA is
often used.

To establish the name and
type of an identifier used
in a computer program.
Some languages (Pascal,
for instance) require that
all identifiers be
declared before they are
used.

A-35

Appendix H

Decode

Default

Default Disk

Delimiter

A utility used to inspect
the contents of code
files.

A state or action which
will take effect unless an
explicit action is taken
to choose another
possibility. For
instance, in S(et
E(nvironment in the
edi tor, there are many
options that can be set.
All of them have default
settings which determine
the operation of the
editor until they are
changed.

The volume where the
p-System looks for a file
unless the file
specification explicitly
indicates another volume.

A "fence" that marks the
boundaries of a sequence
of characters. In the
editor, for instance,
delimiters enclose the
target string sought by
F(ind. These delimiter
characters can't be
letters or numbers, but
they can be any of the
special characters, such
as "&" or "I".

A-36

Appendix H

Device Peripheral equipment
accessible to the
p-System. There are two
varieties: storage and
com m u n i cat ion •
Originally, and sometimes
still, a device was
referred to as a "unit."
This usage has been
changed to avoid confusion
wi th the UCSD Pascal
language construct of the
same name.

Device Number A number used to refer to
a particular storage or
communications volume. It
is always preceded by a
number sign (#) and
usually followed by a
colon (:). For example,
#5: •

Direction Indicator In the Screen-0riented
Edi tor or EDVANCE , the
flag at the upper-left
corner of the screen that
indicates the assumed
direction for various
editor operations.

Directory An area on a storage
volume that contains
"housekeeping" information
(such as names and
locations) about the files
on the volume.

A-37

Appendix H

Directory Listing

Editor

EDVANCE

Execute

Execution Error

Execution

A human-readable list,
usually on the console, of
the files on a given
storage volume, along with
miscellaneous infolmation
about each file.

A p-System program that is
used to examine, create
and modify text files.

The Advanced Editor.
EDVANCE incorporates a
wide range of enhancements
o v e r the p-S y s t em
Screen-0Tiented Editor.

To give control of the
p-System to a program
(usually via the X(ecute
activity) •

An error detected by the
p-System during the
execution of a program.
When such an error is
detected, a message is
produced on the console.
The message includes error
coordinates indicating the
program section that was
executing when the error
occurred. Usually the
program must be canceled
and the p-System
reinitialized.

A-38

Option String

Extended Memory

File

File Specification

Appendix H

A sequence of execution
option statements, usually
entered in response to the
X(ecute prompt.
Individual execution
options can affect a
variety of aspects of
p-System operation, such
as the prefix volume, the
source of input, and so
on.

A facility available on
some p-Systems that allows
programs to use up to 64K
bytes of main memory for
da ta , pIus another 64K
bytes for program
segments.

A named collection of
information on a storage
volume. Also (less
frequently), a stream of
information transmitted
through a communication
volume.

A description of a source
for input or a destination
for output in the
p-System. A file
specification has three
major components, all of
which are optional: the
Volume ID, the File Name,
and the Size
Specification.

A-39

Appendix H

File Suffix

Floating Point
Number

Format

FORTRAN-77

Foto File

One of several special
endings for file names.
The file suffix usually
indicates the file type.
The standard file suffixes
are •TEXT , •CODE, •SVOL ,
•BACK , •DATA , .BAD, and
.FOTO.

See "Real Number."

To prepare a disk for use
wi th the p-System. This
involves writing addresses
and other control
information on the disk.
Any user information
previously stored on the
disk is destroyed by this
operation.

A popular high level
programming language
supported in the p-System.

A file that contains
graphic images for use by
Turtlegraphics. The name
of the file has the suffix
.FOTO; for example,
PICI'URE.FOTO.

A-40

Fragmented

Identifier

I/O

I/O Error

I/O Redirection

Appendix H

The condi tion of a
p-System storage volume
when the total unused
space on it is spread
among many small areas.
The size of the largest
file tha t can be stored on
a fragmented volume is the
size of the largest single
area.

The name of an object in a
progranming language such
as Pascal.

Input and output.

An error detected by the
p-System during an input
or output operation. For
example, a disk write will
fail if the disk has been
inappropriately removed
from its drive. An I/O
error is one kind of
execution error.

A feature that allows the
p-System's input to come
from some place other than
the keyboard. Also,
output for the p-System
can be ~ent to some place
other than the screen.

A-41

Appendix H

I/O Result

Instruction Set

Integer Number

Interpreter

KSAM

Library

A number indicating the
success or failure of a
p-System I/O operation.
If this number is zero,
the operation was a
success; otherwise, the
number identifies the
problem that occurred
during the I/O operation.

The fundamental operations
that a microprocessor is
capable of performing.
Different kinds of
microprocessors usually
have different instruction
sets.

A whole number (without a
fractional part).

See "p-machine emulator."

Keyed sequential access
method; a file management
facility available for the
p-System.

A code file that contains
one or more units which
can be used by programs or
other units.

A-42

Library Text File

Library Utility

Linker

Long Integer

Marker

Appendix H

A text file containing a
list of library file
names. When a program is
invoked, the libraries
listed in the current
library text file are
searched for any units
needed by the program.

The p-System library
management facility. It
is used to inspect,
modify, and create
libraries and other code
files.

A p-System program that
combines assembled code
files with each other or
with a compiled code file.
Also called a "link
editor."

A language feature of UCSD
Pascal that supports
integer arithmetic with up
to 36 decimal digits of
precision.

A named, invisible flag on
a particular location
within a text file.

A-43

Appendix H

Menu

Microprocessor

Module

Mount

Multitasking

A list of available
activities that is
displayed on the screen by
the operating system and
many p-System programs.
An acti vi ty can be
selected from a menu with
a single keystroke.

A miniaturized computer.
Provides the computational
Power for most personal
computers. Executes the
instruct ions of the
software running in the
personal computer.

A component of some larger
structure with the
attribute that it can be
handled separately from
the rest of the structure
in some sense. A UCSD
Pascal unit is a module of
a program.

To cause a subsidiary
volume to be accessible to
the p-System.

The execution of two or
more tasks concurrently
within a single UCSD
Pascal program.

A-44

Native Code

Native Code
Generator

n-code

Nonblock-Structured
Device

Object Code

Appendix H

Machine level code that is
produced by the native
code generator as the
translation of a section
of p-code.

A program tha t translates
portions of an executable
p-code file into native
code. The resulting code
file always contains a
combination of p-code and
n-code.

See "Native Code."

Referred to in this book
as "Corrmunication Volume."
Earlier p-System
documentation, and many
p-System prompts and error
messages still use
" non b 1 0 c k-s t r u c t u red
device," or "unblocked
device," when referring to
corrrnunication volumes.

The machine-readable
representation of a
computer program.

A-45

Appendix H

On-Line

Pascal

p-code

p-machine

p-machine

The status of a volume
when the p-System can
access it. For a storage
volume to be on-line, the
disk must be in the
appropriate drive. For a
communications volume to
be on-line, the I/O device
must be properly connected
and turned on.

A widely used high level
language. UCSD Pascal, an
extended version of this
language, is the principal
programming language in
the p-System.

Psuedo-code: p-machine
code generated by the
p-System compilers and
executed by the p-machine
emulators.

An idealized
pseudo-computer optimized
for high-level language
execution on small host
machines; the foundation
of the p-System's
portability.

A-46

emulator

PME

Portability

Prefix Disk

Print Spooler

Procedure

Appendix H

The part of the p-System
that allows a host
microcomputer to imitate
the operation of the
p-machine. It is
implemented in the
assembly language of the
host computer.

See "p-machine emulator."

The ability to move
executable code between
dissimilar microcomputers
without recompilation or
other change. This is
possible in the p-System
because programs are
compiled into p-code that
can be executed on any
computer on which the
p-System has been
installed.

See "Default Disk."

A facility for printing
text files concurrently
with other activities in
the p-System (particularly
text edi ting) •

A named subprogram that
handles part of the job of
a larger program or uni t •

A-47

Appendix H

Program

Program Chaining

Prompt

p-System

RAM

RAM Disk

A set of detailed
instructions that direct a
computer in the
performance of a specific
task. Also, the process
of creating such a set of
instructions.

Causing the automatic
execution of one program
from another program.

A request (by a p-System
program) for information
from the p-System user;
the user is expected to
enter the information at
the keyboard, followed by
<return>.

A portable microcomputer
software environment for
execution and development
of applications programs.

Random Access Memory. A
computer's main memory.

A logical storage volume
maintained in main memory.
I t can generally be used
for the same purposes as a
conventional disk volume
(includi ng storage of
files), but the
information it contains is
usually lost when the
computer is turned off.

A-48

Real Number

Reb<::xJt

Redirect

Root Volume

Run-time Software

Screen-Oriented
Editor

Script File

Segment

Appendix H

A number that can have a
fractional part, such as
"5.67982".

To start up the p-System
again. To "reb<::xJtstrap."

See "I/O Redirection."

See "System Disk."

p-Systern software that is
needed to run programs.

The principal text editing
tool of the p-System. It
is optimized for use with
display consoles, rather
than printing consoles.

A file containing
characters representing
the keystrokes that you
would type during a
session with the p-System.
When p-System input is
redirected to this script
file, those keystrokes are
read as if they were
coming from the keyboard,
and the session is
recreated.

See "Code Segment."

A-49

Appendix H

Source Text

Special Character

Special Key

Storage Volume

Subsidiary Volume

The human-readable form of
a computer program. (Also
referred to as "source
code. ")

A visible character that
isn't a number (0 through
9) and not a letter (A
through Z). Examples of
special characters include
"*", "/", "(", and "@".

A keyboard key that has a
particular meaning to the
p-System other than
representing an ordinary
visible character.
Example: the <return>
key.

An input/output device
that can store information
wri tten to it, for
retrieval at a later time.
Usually some sort of a
disk, but can be an area
of main memory, as well.
(See "RAM Disk.")

A file on a storage volume
that contains its own
volume structure with a
directory and files. This
subsidiary volume becomes
accessible to the p-System
when it is "mounted." The
subsidiary volume facility
of p-System Version IV.1

A-50

Substitute String

•SVOL File

Syntax

Syntax Error

System Disk

Appendix H

supports a two-level file
heirarchy.

The character pa ttern tha t
is to take the place of
instances of the target
string which are found by
the R(eplace activity in
the SCI' e e n-o I' i e n ted
Editor •

A file identified by the
suffix .SVOL that contains
a subsidiary volume; for
example, NAME.SVOL.

The rules governing the
structure of a program
written in a computer
programming language.

A place in a computer
program where the rules of
the programming language
are violated.

The disk from which the
p-System was bootstrapped.
It contains the operating
system software. Also
known as "root" or "boot"
disk. All three of these
adjectives also occur with
"volume" instead of
"disk."

A-51

Appendix H

System Files The disk files
contain the
components of
p-System.

which
main

the

Target String

Text File

Turtlegraphics

Type Ahead

UCSD

UCSD Pascal

The character pattern
sought by the F(ind and
R(eplace activities in the
Screen-0riented Editor.

A file that contains
user-readable information
(as opposed to machine
code); usually identified
by one of the suffixes
• TEXT or •BACK.

A package of routines that
creates and manipulates
images on a graphic
display.

A capability of a p-System
implementation to store
keystrokes that are typed
before the p-System is
ready to process them.

University of California
at San Diego. Site of the
original development work
on the p-System.

A programming language, an
extended version of the
language Pascal.

A-52

UCSD Pascal System

Unblocked Volume

Unit

Universal Medium

Utilities

Appendix H

The original name of the
p-System.

See "Nonblock-Structured
Volume."

A package of routines and
associated data structures
written in a p-System
programming language
(usually UCSD Pascal).
The facilities implemented
by the unit (or a subset
of them) can be used by
programs or by other
units.

A 5-1/4" diskette format
that is accessible to many
types of small computers.
It facilitates the
distribution of p-System
based personal computer
application programs.

Programs that assist in
various areas of p-System
use such as developing
programs, maintaining
files, printing files, and
so forth.

A-53

Appendix H

Volume A logical entity
representing a p-System
peripheral device. There
are two categories of
volumes: storage volumes
(such as a disk) and
communicaton volumes (such
as the console or the
printer) •

"Volume
The

a
for
or

Short for
Identifier."
designation of
particular volume;
instance, its name
device number.

Volume ID

Wild Cards Special symbols in file
names that allow a group
of files to be represented
by a single file name.

WindO'N In the Screen-Oriented
Editor, the portion of the
display screen that is
used to show a section of
the work-space being
edited.

Work File Special file(s) that are
automatically processed by
major p-System components,
including the editors and
compilers. This automatic
handling is particularly
convenient during the
development of small
programs.

A-54

Work-Space

Write-Protect

Text kept in main memory
by a p-System Editor
during the editing
process. Also called the
"buffer."

Mark a storage volume in
some way so that an error
is reported if the
p-System attempts to write
information onto the
volume. (Reading is
allowed, but writing
isn't.) Used to protect
valuable data from
accidental erasure. The
physical mechanism used to
signal write-protection of
a volume varies with the
storage medium used. For
instance, 5-1/4" diskettes
have a different
convention than 8"
diskettes. Check the
documentation for your
computer to find out how
to write-protect the media
that you use.

XenoFile A utility package
allows you to access
that contain
formatted for the
operating system.

A-55

that
disks
data
CP/M

Appendix H

YALOE Yet Another Line-Oriented
Editor; the p-System
editor used with printing
terminals rather than with
display terminals.

A-56

INDEX

-#-

#4 ••
#5 ••

. 3-10
3-10

-$-

$ •••••••••••••

*·.......

..

-*-
• • • • • • • • • • 3-10,

3-22

3-16

·.............

=·

-?-

? • 3-20,

1-1

3-10

3-22

3-22

Index

-A-
A(bort •••
asterisk •• .. • 3-10,

5-54
3-16

-B-

problems •••••••••••••••••• A-16

• BACK ••••••
BACKSPACE.
•BAD •••••••••••
block-structured. • •
booting

.. ..
3-12, 3-13. 5-65
3-12, 3-14. 3-15

-c-

SIZE ••••••.•••••••.•••. 5-f57

BASE[FIRST \\URD] •••••••
BASE[SEroND \\URD]. • • • • • • • • •

2-27
3-14
3-14

• 5-65
5-65

3-12,
• 2-6,

..
•CODE. • • • • • • • • •••
code files •••••••••••••
roDE ro>L
roDE ro>L
roDE ro>L

CHAIN••••••

menu ••••••••••••••••••••

cursor•...................

colon .
Command
coomunication device.. • • • • • • • • • • • • •
C(omp-uni t .
roPYDUPDIR.. • • • • • • • • • • • • • • • • • 3-98,

3-10
2-4

3-15
• 5-56

5-93
4-4

-D-

n1.lIyibers. • • • • • • • • • • • • • • • • • •

data files ••
Debugger ••••
debugger ••••
default disk....
device

.
3-12
A-13

• • 2-14
3-10
.3-5

1-2

Index

devices ••.••••.•••••••••••• 3-10,
directory. • • • • • • • • • • • • • • • • • • 3-5,
disk swapping....................
duplicate directory •••••••••••• 3-30,

3-15
3-29

2-8
5-93

-E-

EDVANCE ••••••••••••••••••••••••

.. .

...

. .

..

..
.... .

. ..

..
..

. 4-3
1-3
1-3

• .5-67
• .5-68

5-68
5-68
4-3

5-68
• • • •• 5-68

5-69
5-69
5-55

. • . . 2-27
2-25

• •• A-15

.

strings ••

LINE ••••••••••••••
SCREm •••••••••••••

·. . .·...

·.
·.

...
OF
OF

ERASE
ERASE
ERASE

LINE ••••
SCREEN •
TO END

ERASE TO END
E(very •••••••
EXCEPTION•••••
execution option
extended memory.

E(di t ••••••••••
edi ting .
E(ditor ••••••••••
EDITOR A~EPT KEY ••••••
EDITOR ESCAPE KEY •••••••
EDITOR EX~~DELE1'E KEY.
EDITOR EX~E-INSERT KEY •••••••••••

-F-
... 2-6, 3-5

file handling.. • • • 1-3, 3-5
file naJnes .•..•..........••.•••. 3-6
File Name Suffixes.. • •••••••• 3-12
File Name Syntax......... • • • • • 3-6
F(iler. • • • •••••• 1-3, 3-5, 3-44-3-99

B(ad Blocks................... 3-45
C(hange. • • • • • • • • • • • • • • • • • • •• 3-47
D(ate •••••..••••...••••••.•• 3-52
E(xtended List ••••••••••••••••• 3-54

file ••••••••

1-3

Index

K (runch .

P(refix .
Q(uit .

X(amine .
Z(el"O •••••••••••••••••••••••

reals .

3-11 ,

3-19,

3-19,

3-19,

3-19,

3-12,

.
.. .

. ..

...

. .. .

·..

·.

...
.. . .

..

..

·. .

·..

· 3-56
3-58
3-60

•••••• 3-62
• •••••• 3-67

3-69
3-70
3-73
3-75

. 3-76
3-79

. 3-81
• • •• 3-91

3-93
3-94
3-97

. 3-20
3-67
5-56
5-69

packages. • • • • • • • • • • • • • A-7
3-14

A-7

Swap/Lock •••.

O(n/off-line ••

R(emove •••
S(ave •••••
T(ransfer ••••••••
V(olumes ••••••••••••••••
W(hat ••••••••••

N(ew •••••••••••••••••••

F(lip
G(et.

L(ist Directory.
M(ake •• ' •••••

Fi ler Menus ••••
file size •••
F(ill •••••••
FIRST SUBSIDIARY VOL NUMBER.
floating point
• FOTO ••••••••••••••••
four-word

-H-

HAS 8510A ••••• ••••• 5-70
HAS BYTE FLIPPED MACHINE. 5-70
HAS CLOCK ••••• • • 5-71
HAS EXTENDED Ma1ORY •••••••• 5-71
HAS LOWER CASE ••••••••••• • .5-71
HAS R.ANIXJ,1 CURSOR ADDRESSING • • .5-72
HAS SLOW TERMINAL ••••••••• .. . • .5-72
HAS SIa)LING •••• · 5-72
HAS ~RD ORIENTED MACHINE. 5-72

1-4

Index

I(nput ••••••••••

-1-

. 5-56

-K-

. 5-73
5-73
5-73
5-74
5-74

.5-74
•••• 5-74

•• 5-75
5-75
5-75
5-75

UP••••••••••••• • 5-75

OOWN ••
LEFT ••
RIGHT •••

~USH•••••••••••••••••••

INPUT MASK.
BREAK.

KEYOOARD
KEY FOR
KEY FOR
KEY' FOR sroP....................
KEY ro AI..J>HA I..OCK................
KEY ro DELETE ClIARAcrER.
KEY ro DELETE LINE. • • • • • • • • • • •
KEY ro END FILE..
KEY ro MOVE CURSOR
KEY ro MOVE CURSOR
KEY ro MOVE CURSOR
KEY ro MOVE CURSOR

1 i brary .
Library , S ll'le'nu...................
Library Utility.
lost files .

SCREm- ••••••••••••••••
LEAD
LEAD

IN
IN

PROd
ro

-L
KEYOOARD ••• 5-76

5-76
2-28
5-54
5-51
5-98

-M-
M(ake...... • •••• 3-27
MARKDUPDIR. • • • 3-30, 5-94
MAX NUMBER OF SUBSIDIARY VOLS ••••••••• 5-77
MAX NUMBER OF USER SERIAL VOLS. • • • • • 5-77
Menus •••••••••••••••••••••••••• 2-3

1-5

Index

MOVE
~VE

~VE

CURSOR
CURSOR
CURSOR

HOOE. • • • • • • • • • • • • • • •• 5-78
RIGHT ••••••••••••••••• 5-79
UP••••••••••••••••••• 5-79

-N-

CHARAcr:ER. • • • • • • • • • • • • • • 5-79

N(ew•••••••••••••••••
nonblock-structured. device. •
NONPRINTING

. .. •• 5-54
3-15

-0-

O(n/off-line •••••••••••••• • 3-39
operating system.................. 2-3
Operating System Comnands. • • • •• 2-9

A(ssemble •••••••••••••••••••• 2-10
C(ompile'. • • • • • • • • • •••••• 2-12
D(ebug. • • • • • • •• 2-14
E(di t 2-15
F(ile. • • • • • • • • • •••••••• 2-16
H(alt. •••••••••••••• • ••• 2-17
I(nitialize ••••••••••••••••••• 2-18
L(ink. • • • • • •••••• 2-19
M(oni tor. • • • • • • • • • •• 2-20
R(un. • • • • • • • • • • • • • • • • • • •• 2-22
U(ser Restart.. • • • • • • • •• 2-23
X(ecute. • • • • • • • • • • • • • ••••• 2-24

O(utput .••••••••••••.•••••••••• 5-56

-p-

PATCH. • 3-29
prefix. • • • • • • • • • • • 2-28
PREFIXED[item name].............. • • 5-79
PRINT •••••••••••••••••••••••••• 5-4

1-6

Index

PRINTABLE CHARAcrERS. • • • • • • • • • • • • • •
program input....................
program output...................
Prompts ••••••••••••••••••••••••

5-80
2-29
2-29
2-5

-Q-
Q(uit •••••••••• 2-5, 5-54

-R-

.

5-48
• A-7
5-96
3-26
2-27
2-34
5-54

••• 3-29,.........REAL OONV'ERT....................
real munber size.
REXXJV'ER ••••••
Recovering Lost Files..
REDIRECT •••••••••••
redirection. • • • • • • • • 2-25, 2-26 , 2-33 ,
R(efs .

-8-

equals .
filling. • • • • • • • • • • • • • • • • 4-32,
F(ind. • • • • • • • • • • • •• 4-13, 4-28,

scratch input buffers •••••••••• 2-29,
screen-oriented editor..............

A(djust •••••••••••••••••••••

. . • • • . . • • •. 4-18,
indicator ••••••••••••••

D(elete ••
direction

2-32
.4-3
4-20

aut<r-indent ••••••••••••••• 4-32, 4-47
coomand character. • • • • • • • • • • 4-39 , 4-48
control keys. • • • • • • • • • • • • 4-9
C(opy. • • • • • •••••• 4-22
C(opy F(ile••••••••••••••••••• 4-23
cursor 4-9

4-25
4-8

.4-9
4-47
4-34

1-7

Index

cursor .••..•.••...•.

4-17,
4-10,

.......
.

V(erify ...•......•...•..•...

S(et E(nvironment •••••
S(et M(arker.
special keys.......
tab stops •••••••••••
tokens ••••

markers. • • • • • • • • • • • • • • • • 4-24 ,
moving the
P(age ••••••••••••••••••••••
Q(ui t .
repeat factors. • • • • • • • •••
R(eplace ••••••••••••••••• 4-13,
S (et .

global direction •••••••••••••••
I (nsert •••••••••••••••••
J(llIllp ••••••••••••••••••
K(olumn •••••••••••••••••••••
M(argin •••••••••••••••••••••
margins .
marker ••••••••••••••••••••

• 4-8
4-31
4-35
4-36
4-37
4-48

•• 4-35
4-50
4-10

• 4-40
4-41

4-7
4-43
4-46

4-6, 4-31, 4-46
• • 4-50

. 4-9
• •••••• 4-49

4-50
4-52

work file •••••••••••••••••••• 4-15
X(change. • • • • • • • • • • • • • • • •• 4-53
Z(ap. • • • • • • • • • • • • • • • • • • 4-55

screen display problems ••••••••••••• A-18
SCREEN HEIGHT.................... 5-80
SCREEN WIDTH..... • • • • • • • • • • 5-81
SEGMENT ALIGNMENT. • • • • • • • • • • • • • • 5-81
segments ••••••••••••••••••••••• 3-56
S(elect 5-56
separate compilations ••••••••••••••• 5-51
serial devices.. • • • • • • • • • • • • • • • 3-43
SETUP. • • • • • • • • • • • • • • • • 3-42, 5-57
storage device.. • • • • • • • 3-5, 3-15
STUDENT •••••••••••••••••••••••• 5-82
subsidiary volumes. • • • • • •• 3-10, 3-33, 5-62
•SVOL. • • • • • • • • • • 3-12, 3-14, 3-34
system disk......... • • •• 3-10
system files ••••••••••••••••• 1-10-5-57

1-8

Index

SYSTEM.MmU •••••••••••••••••••

input.
output•....••.....•.

/~,

SYSTEM.ASSMBLER • • 1-11,
SYSTEM. <ndPILER • • • • • • • 1-11,
SYSTEM. EDITOR •••••••••• 1-11, 2-15,
SYSTEM. FILER. • • • • • • • • • • • • • • • • •
SYSTEM. INTERP ••••••••••••••••••
SYSTEM.LIBRARY ••••••••••••• 1-12,
SYSTEM.LINKER ••••••••••••••••••
SYSTEM.LST •TEXT. • • • • • • • • • • • • • • •

SYSTEM.MISCINro ••••••••• 1-10, 4-3,
SYSTEM.PASCAL ••••••••••••••••••
SYSTEM. STARTUP••••••••••••• 1-12,
SYSTEM.SYNTAX. • • • • • • • • • • •• 1-11,
SYSTEM. WRK.OODE. • •••• 2-10, 2-12,
SYSTEM.WRK.TEXT. • 2-10, 2-12, 3-18,

system
system

-T-

2-10
2-12
4-3

2-16
1-12
2-28
2-19
3-18
1-12
5-57
1-10
2-18
2-13
3-18
4-41
2-30
2-30

.. ...
• TEXT ••••••••••
text files •••••
T(og ••••••••
two-word reals..

..

-u-

.
.2-6,

3-12, 3-13
2-15, 3-13

•• 5-54
•• A-7

UNIT PASCALIO......... • • • • • • • • • 5-52
user-defined serial devices. 3-10, 5-62
user library......... • • • • 2-28
USERLIB. TEXT •••••••••••••••••••• 2-28
using Library.................... 5-52
utilities 5-3

1-9

Index

-v-

3-10
3-15

5-82
3-5

• 3-7

.• •.

PoI)VE DELAY •••••••••••••••
ID••••••••••••••••••••••

Syntax •••••••••••••••••
name ••••••••••••••••••••• 3-5

volumes •••••••••••••••••••• 3-10,

VERTICAL
volume
Volume ID
volume
volume numbers ••

-w-
Wild Cards..................... 3-22
window. • • • • • . . •••••.•••••••• 4-4
work file •••••••••••••• 2-22, 3-18, 3-58
WRITELN ••••••••••••••••••••••• • 5-52

YALOE••••••••••

-y-

.. 4-3

~,

)

~,

)

I-10

	Cover
	Preface
	Table of Contents
	Chapter 1: Introduction
	Organization of This Manual
	Background
	Design Philosphy
	Using the p-System
	p-System Configurations

	Chapter 2: The Operating System
	Introduction
	Menus and Prompts
	Disk Swapping
	Operating System Commands
	A(ssemble
	C(ompile
	D(ebug
	E(dit
	F(ile
	H(alt
	I(nitialize
	L(ink
	M(onitor
	R(un
	U(ser Restart
	X(ecute

	Chapter 3: File Management
	Introduction
	File Organization
	Work Files
	Using the Filer
	Recovering Lost Files
	Subsidiary Volumes
	User-Defined Serial Devices
	Filer Functions
	B(ad Blocks
	C(hange
	D(ate
	E(xtended List
	F(lip Swap/Lock
	G(et
	K(runch
	L(ist Directory
	M(ake
	N(ew
	O(n/off-line
	P(refix
	Q(uit
	R(emove
	S(ave
	T(ransfer
	V(olumes
	W(hat
	X(amine
	Z(ero

	Chapter 4: Screen-Oriented Editor
	Introduction
	The Editor
	A(djust
	C(opy
	D(elete
	F(ind
	I(nsert
	J(ump
	K(olumn
	M(argin
	P(age
	Q(uit
	R(eplace
	S(et
	V(erify
	X(change
	Z(ap

	Chapter 5: Utility Programs
	Introduction
	PRINT
	PRINT SPOOLER
	QUICKSTART
	REAL CONVERT
	LIBRARY
	SETUP
	DISKSIZE
	COPYDUPDIR
	MARKDUPDIR
	RECOVER

	Appendices
	A: Execution Errors
	B: I/O Results
	C: Device Numbers
	D: ASCII Table
	E: Configuration Notes
	F: USUS Membership Application
	G: Software Problem Report
	H: p-System Glossary

	Index

